Cellular Composition of Tumors

Carcinomas:

Epithelial cell-derived.

Stroma:

Fibroblasts, Myofibroblasts, Fibrocytes Inflammatory/Immune Cells Lymphocytes T-Cells, Dendritic cells NK cells Neutrophils Monocytes/Macrophages Mast cells Vascular Cells Endothelial cells Endothelial Precursor Cells Pericytes/Smooth Muscle Cells

Sarcomas:

Mesenchymal cell-derived

Stroma:

All the above!

Relationship Between Wound Healing and Carcinogenesis

Figure 13.14 *The Biology of Cancer* (© Garland Science 2007)

Moses Judah Folkman, 1933-2008 "Father of Angiogenesis"

ANGIOGENESIS

- Prominent during embryogenesis, development and growth
- Virtually absent in adults
- Prominent in ovulation, menstrual cycle and placental formation
- Critical in wound repair and granulation tissue formation
- Prominent in chronic inflammation and fibrosis
- Critical in solid tumor growth and development

2/26/2015

Granulation Tissue

Tumour Angiogenesis

ANGIOGENESIS

- Target Cells:
 - Endothelial Cells and Pericytes/Smooth Muscle Cells of Capillaries and Small Venules
- Processes Involved:
 - Disruption of Blood Vessel Continuity
 - Activation/De-Repression of Endothelial Cells
 - Degradation of Basement Membrane
 - Cell Migration
 - Cell Proliferation
 - Lumen Formation
 - Reformation of Basement Membrane
 - Cell Maturation
 - Capillary Loop Formation

ANGIOGENIC FACTORS

Fibroblast Growth Factors (FGFs)

- Two major forms:
 - FGF-1 (aFGF) and FGF-2 (bFGF)
 - M.Wt. 17kDa
 - Bind strongly to HEPARIN
 - No SECRETORY SIGNAL SEQUENCE
 - Found in BASEMENT MEMBRANES

- Questions

- How are FGFs mobilized in Angiogenesis?
- Are FGFs an autocrine control factor for endothelial cells?

Vascular Endothelial Growth Factor (VEGF) Vascular Permeability Factor

- Dimeric, heparin binding protein
- Potent regulator of vascular permeability
 - 50,000 X more potent than histamine
- Secreted by a wide range of tumor cells
 - carcinomas, sarcomas, glioblastomas, monocytic leukemia cells
- Secreted by macrophages
- VEGF = VPF
 - One gene, eight alternatively spliced exons
 - In human, four molecular species (121, 165, 189, 206 aa)
 - In mouse, three molecular species (121, 165, 189 aa)
- Hypoxia is a major regulator of expression via activation of HIF1.
- Adenosine signaling is also major regulator of VEGF expression.

Receptors & Ligands Involved in Regulation of Angiogenesis

LIGAND	RECEPTOR	FUNCTION
VEGF	VEGFR-2 (KDR, Flk-1) VEGFR-1 (Flt-1)	Endothelial Mitogen
Angiopoietin-1 Angiopoietin-2 (acts as antagonist)	TIE-2	Recruitment of accessory cells (SMCs, pericytes)
?	TIE-I	Endothelial cell-cell Interactions
Ephrin-B2 (Arterial)	Eph-B4 (Venous)	Differentiation of arterial vs venous microvasculature
Neuropilins	VEGF-R2	Patterning?

VEGF and VEGF RECEPTORS

• VEGF

- Essential for both vasculogenesis and angiogenesis
- Knockouts:
 - Die at 8.5-9.5 days in utero.
 - Delayed differentiation of endothelial cells.
 - impairment of both angiogenesis and vasculogenesis.
- VEGF-R2 (Flk-1, KDR):
 - Restricted to endothelial cells and their embryonic precursors.
 - Knockouts:
 - Die in utero between 8.5 and 9.5 days.
 - Yolk sac blood islands do not form.
 - No organized blood vessels in embryo yolk sac..
 - Required for hemangioblast to endothelial cell differentiation
- VEGF-R1 (Flt-1):
 - Restricted to endothelial cells and their embryonic precursors.
 - Knockouts:
 - Die in utero at mid-somite stage (Day 9).
 - Essential for organization of embryonic vasculature (EC cell-cell or cell-matrix interaction).
 - Not essential for endothelial cell differentiation.

Endothelial Cell-Specific Tyrosine Kinase Receptors

- TIE-1:
 - Knockouts:
 - Form a primitive vasculature
 - Fail to develop structural integrity of vascular endothelial cells.
 - Develop edema and localized hemorrhage.
 - Die in utero at 9-10 days.
 - Ligand unknown
- TIE-2:
 - Knockouts:
 - Fail to recruit smooth muscle cells and pericytes precursors to primitive vasculature.
 - Poorly developed pericardium in heart.
 - Die in utero at 9-10 days.
 - Important in angiogenesis for vascular network formation.
 - Ligand is ANGIOPOIETIN-1 (Ang-1) EC chemoattractant.
 - Knockouts of Ang-1 have phenotype similar to Tie-2 knockouts.
 - Mutation of TIE-2 in patients (Arg Tryp):
 - Venous malformations.
 - Develop vein-like structures deficient in non-endothelial cells. Mainly lack smooth muscle cells and pericytes).
 - Angiopoietin-2 (Ang-2): Competitive inhibitor of Ang-1.

2/26/2015

Endothelial Cell - Pericyte Interactions

ARTERIES vs VEINS

Role of Receptor Tyrosine Kinoses of the EPHRIN-B / EphB Family

Eph Family: Has at least 14 members

Ephrins: Ligands for Eph family proteins; At least 8 family members 2 classes: A and B

Ephrin-B ligands are trans-membrane proteins, that bind preferentially to receptors of the Eph-B sub-class. Ephrin-A ligands are GPI-linked membrane proteins.

These molecules are NOT SOLUBLE mediators. They are membranebound, and activate cognate receptor on partner cells by cell-cell interactions. Signaling is RECIPROCAL, i.e. forward and reverse.

Ephrin-B2 is ARTERIAL. Eph-B4 is Venous

Thrombospondin

FIG. 1. Cartoon of the 180-kDa subunit of the homotrimeric human TSP molecule. Binding sites for individual monoclonal antibodies raised to TSP are indicated above the diagram; specific domains are below. The portion of the TSP molecule containing homology to the N-terminal amino acids of gp140 and shared antigenic sites is indicated by the bar. Numbers 1 and 5 mark the positions of the peptides used to make TSP anti-peptide serum. EGF, epidermal growth factor.

2/26/2015

Li-Fraumeni Fibroblasts and Regulation of Angiogenesis by p53

- LF patients show a greatly increased susceptibility to tumor development.
- Patients have 1 defective p53 allele and 1 wild-type allele.
- LF fibroblasts in culture lose remaining wt p53 allele over several generations.

EARLY PASAGE		LATE PASSAGE
Intact	p53	Lost
Low	Angiogenic Activity	High
High	TSP-1	Low
Low	VEGF	High

Transfected p53 T ⁰ -sensitive mutant: WT at 32°C, Mutant at 38°C.				
38°C	TSP-1	Low		
32°C.	TSP-1	High		

Angiogenesis Inhibitors:

• ANGIOSTATIN:

- Fragment of Plasminogen.
- Produced by Primary Tumor Mass
- Present in the Circulation
- Suppresses Growth of Metastases
- Removal of Primary Tumor de-suppresses Growth of metastases

• ENDOSTATIN:

• Fragment of Type XVIII collagen

Name	Status	Responses
A. Endogenous inhibitors	s of angiogenesis	
Endostatin	in clinical trial	scattered responses
Interferons- α and - β	effective in treating hemangioblastomas	Kaposi's sarcomas; limited efficacy against most other types of tumors
B. Agents that block VEG	F and VEGF-R signaling	
Avastin anti-VEGF MoAb	in clinical trial	delayed progression 1–3 months in lung, 3–4 months in colon
SU5416 inhibitor of VEGF-R2 (Flk-1)	trial abandoned	severe vascular toxicities
ZD6474 inhibitor of VEGF-R2	under clinical test	
CP547, 632 inhibitor of VEGF-R2	in trial	
C. Miscellaneous other d	rugs	
Thalidomide	in trial	inhibits bFGF- and VEGF-dependent angiogenesis
Squalamine sterol from shark liver	in trial	strong anti-angiogenic activity
Celecoxib anti- inflammatory drug	in trial	multiple anti-neoplastic effects
ZD6126	in trial	antagonist of tubulin in endothelial cell cytoskeleton
Fumagillin and TNP-470	in trial; slowed tumor growth	antagonist of methionine aminopeptidase in endothelial cells
D. Inhibitors of ECM brea	akdown—MMP inhibitors	
Marimastat	in clinical trial	no delay of tumor progression
Prinomastat	in clinical trial	no slowing of tumor progression
BMS275291	in clinical trial	
BAY12-9566	in clinical trial	
Neovastat (shark	in clinical trial	

Table 13.4 The Biology of Cancer (© Garland Science 2007)

OXYGEN AND ANGIOGENESIS

- Low ppO₂ stimulates erythropoiesis
- Low ppO₂ stimulates erythropoietin production in kidney
- Oxygen Tension & Angiogenesis:
 - High pp0₂ inhibits angiogenesis
 - Low pp0₂ stimulates angiogenesis

Relationship to ALTITUDE PHYSIOLOGY:

- Increased capillary density in muscle at high altitudes. Effect only up to certain elevation.
- FAILURE of WOUND REPAIR above 15,000ft.
 - » (Himalayas Expeditions)

Hypoxia Inducible Factor (HIF1) Hypoxia Response Element (HRE)

Hypoxia Inducible Genes

- Erythropoietin (Epo)
- VEGFs
- Glycolytic Enzymes
 - Lactate Dehydrogenase (LDH)
 - Pyruvate Kinase M (PKMP
 - Enolase 1
 - Phosphoglycerate Kinase 1 (PGK1)
 - Aldolase A (ALDA)
 - Phosphofructokinase (PFKL)
 - Glucose Transporter 1 (GLUT-1)
- Inducible Nitric Oxide Synthase (iNOS)
- Heme Oxygenase
- Ferritin Receptor and Ferritin
- Tyrosine Hydroxylase

2/26/2015

Role of Hypoxia in Angiogenesis

Figure 13.27a The Biology of Cancer (© Garland Science 2007)

human melanoma

rat prostate cancer

Figure 13.27b The Biology of Cancer (© Garland Science 2007)

Adenosine and Adenosine Receptors

- > Unstable and ubiquitous purine nucleoside produced by breakdown of ATP.
- Released in response to stressful stimuli. Binds receptors to modulate, and protect cells from the harmful consequences of stress
- > Adenosine receptors (A₁R, A_{2A}R, A_{2B}R, A₃R) are expressed on many cell types: they bind a wide spectrum of natural and synthetic agonists and antagonists.
- > Activation of ARs on immune cells generally exhibits anti-inflammatory effects:
 - Inhibition of phagocytosis.
 - Decreased expression of inflammatory cytokines and chemokines, ROS and NO.
 - Increased expression of anti-inflammatory cytokines.

Reciprocal Regulation of TNF α and VEGF in Macrophages In Response to LPS and Adenosine Receptor (AR) Agonists

Adenosine synergizes with TLR signaling to switch macrophages from an "*inflammatory*" to an "*angiogenic*" phenotype

Regulation of HIF-1 α Expression by LPS and NECA

Q-RT-PCR Analysis of HIF-1 α mRNA

Western Blot Analysis of HIF-1 α

