HIV and the Immune System

May 13, 2009
HIV/AIDS HISTORY

- **1926-46** - HIV possibly spreads from monkeys to humans. Newer data suggest viral ancestor appeared 1884-1924.
- **1959** - First proven AIDS death.
- **1981** - The Centers for Disease Control and Prevention (CDC) notices high rate of otherwise rare cancer.
- **1982** - The term AIDS is used for the first time.
- **1983/84** - American and French scientists each claim discovery of the virus that will later be called HIV.
- **1985** - The FDA approves the first HIV antibody test for blood supplies.
- **1987** - AZT is the first anti-HIV drug approved by the FDA.
- **1996** - FDA approves first protease inhibitors.
- **2005** - >3 million deaths in one year world wide.
- **2008** - Luc Montagnier wins Nobel Prize.
GLOBAL TOTALS
- People living with HIV/AIDS, December 2005: 40.3 million
- New infections in 2005: 4.9 million
- Deaths due to HIV/AIDS: In 2005: 3.1 million
 Cumulative: More than 25 million

North America 1.2 million
Caribbean 350,000
Latin America 1.8 million
North Africa/Mideast 510,000
Sub-Saharan Africa 25.8 million
Western Europe 720,000
East Europe/Cen Asia 1.6 million
East Asia 870,000
South Southeast Asia 7.4 million
Oceania 74,000
Australia/New Zealand 15,000

Male: female proportions

Figure 20-8
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W. H. Freeman and Company
Figure 20-7
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H. Freeman and Company
Transmission of HIV infection requires contact with

Blood
Milk
Semen
Vaginal fluid
Wound exudates from an infected individual.

Saliva, tears and sweat do not transmit HIV
Structure of HIV-1

CD4 - CD4+ T lymphocytes, monocytes, DCs, brain microglia

CCR5 - mononuclear phagocytes, T cells (M-tropic) - 1st to be infected

CXCR4 - naïve T cells, B cells, monocytes (T-tropic) (2%) - 50% switch late in infection
Table 1

Patient characteristics and distribution of class I HLA alleles associated with disease progression.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Elite controllers</th>
<th>Viremic controllers</th>
<th>Chronic progressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects, no.</td>
<td>66</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Age, mean (range), years</td>
<td>47 (22-75)</td>
<td>48 (32-67)</td>
<td>36 (18-70)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>42 (64)</td>
<td>47 (78)</td>
<td>24 (80)</td>
</tr>
<tr>
<td>Female</td>
<td>24 (36)</td>
<td>13 (22)</td>
<td>6 (20)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>36 (54)</td>
<td>35 (58)</td>
<td>17 (57)</td>
</tr>
<tr>
<td>Black</td>
<td>19 (29)</td>
<td>13 (22)</td>
<td>3 (10)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>9 (14)</td>
<td>5 (8)</td>
<td>8 (27)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (3)</td>
<td>7 (12)</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Plasma HIV RNA level, median (IQR), copies/mL</td>
<td>Below detection</td>
<td>770 (348-1500)</td>
<td>152,000 (67,050-278,000)</td>
</tr>
<tr>
<td>CD4+ cell count, median (IQR), cells/mm³</td>
<td>884 (641-1149)</td>
<td>602 (451-786)</td>
<td>295 (203-455)</td>
</tr>
<tr>
<td>Duration of HIV diagnosis, median (IQR), years</td>
<td>15 (9-22)</td>
<td>17 (13-25)</td>
<td>5.5 (1-17)</td>
</tr>
<tr>
<td>CCR5Δ 32 genotype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>57 (86)</td>
<td>47 (78)</td>
<td>NA</td>
</tr>
<tr>
<td>HT</td>
<td>9 (14)</td>
<td>13 (22)</td>
<td>NA</td>
</tr>
<tr>
<td>CCR2-64I genotype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>56 (85)</td>
<td>47 (78)</td>
<td>NA</td>
</tr>
<tr>
<td>HT</td>
<td>9 (14)</td>
<td>9 (15)</td>
<td>NA</td>
</tr>
<tr>
<td>HM</td>
<td>1 (1)</td>
<td>4 (7)</td>
<td>NA</td>
</tr>
<tr>
<td>HLA-B*57</td>
<td>29 (44)</td>
<td>20 (33)</td>
<td>3 (10)</td>
</tr>
<tr>
<td>HLA-B*27</td>
<td>10 (15)</td>
<td>12 (20)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>All protective HLA alleles</td>
<td>45 (68)</td>
<td>36 (60)</td>
<td>11 (37)</td>
</tr>
<tr>
<td>Combined protective HLA alleles and chemokine receptors</td>
<td>48 (73)</td>
<td>43 (72)</td>
<td>NA</td>
</tr>
</tbody>
</table>

Note. Data are no. (%) of subjects, unless otherwise indicated. See Methods for details about the 3 study groups. WT, wild type; HT, heterozygous; HM, homozygous; NA, not applicable.

a Elite controllers compared to viremic controllers, $P < .001$ by nonparametric Mann-Whitney test.

b Includes B*57, 27, 5801, 1503, 13 and 51.
Analysis of viral isolates

• Considerable variations in envelope glycoproteins.
• M (major group) >90% of all infections
 – Clades (subtypes) A through K.

• O (outlier group) - restricted to west-central Africa
• N group - (“new”) extremely rare - discovered in Cameroon
Mechanism of HIV entry into a cell

Molecular basis of HIV entry into host cells. Interactions with CD4 and a chemokine receptor ("coreceptor"). (Adapted by permission from Macmillan Publishers Ltd, from Wain-Hobson S: HIV. One on one meets two. Nature 384:117, copyright 1996.)
Pathogenesis of HIV

1. **Primary infection of cells in blood, mucosa**
 - CD4+ T cell
 - Dendritic cell

2. **Drainage to lymph nodes, spleen**

3. **Infection established in lymphoid tissue, e.g., lymph node**

4. **Acute HIV syndrome, spread of infection throughout the body**

5. **Viremia**

6. **Immune response**
 - Anti-HIV antibodies
 - HIV-specific CTLs

Kumar et al: Robbins Basic Pathology 8e - www.studentconsult.com 5-32
Partial control of viral replication

Proivirus

Clinical latency

Latent infection Low-level infection

Other microbial infections; cytokines (e.g., TNF)

Extensive viral replication and CD4+ cell lysis

AIDS

Destruction of lymphoid tissue: depletion of CD4+ T cells
Mechanisms of CD4 cell loss

1. HIV infection of CD4+ T cells
 - Viral replication in infected CD4+ T cells
 - Death of infected cells (cytopathic effect of virus)

2. Chronic T-cell activation
 - Activation of uninfected CD4+ T cells
 - Activation-induced cell death (apoptosis)

3. Expression of HIV peptides on infected CD4+ T cells
 - Killing of infected cells by virus-specific CTLs
Normal CD4 = 500-1600

Start antiretroviral therapy when CD4<350
Nonprogressors

I. Seroconvert - immune competence maintained - low levels of virus

II. Seronegative and disease-free

III. CCR5 deficient (CCR5− 32-32-nucleotide deletion - 1% of the caucasian population

IV. HLA-B*27 and HLA-B*57 slow progression
Latently infected quiescent CD4+ T cells that contain non-integrated proviral DNA are important long-living reservoirs.
<table>
<thead>
<tr>
<th>Stage of infection</th>
<th>Typical abnormalities observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td>Infection and destruction of dendritic cells; some structural disruption</td>
</tr>
<tr>
<td>Late</td>
<td>Extensive damage and tissue necrosis; loss of follicular dendritic cells and germinal centers; inability to trap antigens or support activation of T and B cells</td>
</tr>
</tbody>
</table>
Lymph Node Fibrosis in HIV Infection

Normal HIV infected

Table 20-4

Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H. Freeman and Company

TABLE 20-4 Immunologic abnormalities associated with HIV infection

<table>
<thead>
<tr>
<th>Stage of infection</th>
<th>Typical abnormalities observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td>Increased levels of some cytokines</td>
</tr>
<tr>
<td>Late</td>
<td>Shift in cytokine production from T_H^1 subset to T_H^2 subset</td>
</tr>
</tbody>
</table>

CYTOKINE PRODUCTION

<table>
<thead>
<tr>
<th>Stage of infection</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td>Highly significant reduction in proliferative capacity of T_H^1 cells and reduction in skin-test reactivity</td>
</tr>
<tr>
<td>Late</td>
<td>Elimination of DTH response; complete absence of skin-test reactivity</td>
</tr>
</tbody>
</table>

DELAYED-TYPE HYPERSENSITIVITY
Altered APC function, chemotaxis, and cytokine production

FIG. 1. Alterations of phagocytic and opsonic activities of monocytes/macrophages and PMNLs against intracellular and extracellular organisms induced by HIV.
MECHANISMS OF IMMUNE EVASION

High mutation rate - replication of retroviruses is prone to error - opportunity for accumulation of undesirable mutations

Downregulation of class I MHC molecules

Preferential inhibition of CMI
• Acute stage: HIV preferentially replicates within activated, or recently activated memory, CD4+ T cells that express CCR5. Most CD4+ T cells in the intestine (particularly in the lamina propria) express this phenotype - favored target for virus.

• Chronic activation: disruption of organization of the immune system.

Gut-Associated Lymphoid Tissue (GALT) Is a Reservoir of HIV Infection in Patients on ART

Gastrointestinal CD4$^+$ T cells harbor a greater viral burden than PB CD4$^+$ T cells during acute and early HIV-1 infection.

Migration of T cells to GALT is mediated by $\alpha 4\beta 7$. gp120 binds to an activated form of $\alpha 4\beta 7$.

Following HAART in pts with undetectable blood HIV RNA (>4 yrs), T cell numbers (sigmoid colon) increased.
Development of AIDS is like an impending train wreck

Viral Load = Speed of the train
CD4 count = Distance from cliff

"tap-and-drain" model

J. Coffin, XI International Conf. on AIDS, Vancouver, 1996
A Modified Coffin Model

Developing AIDS is like an impending train wreck:

- The CD4 count is the distance from the cliff
- Viral load is the fuel
- Speed of the train depends on:
 - Engine gear ratio (host factors)
 - Fuel mix (i.e., immune activation driven by viremia and other factors – e.g., other microbial TLR ligands)

Rodriguez, Lederman
Possible causes of immune activation:

1. Innate and adaptive immune response to HIV and its antigens
2. Direct effect of HIV proteins to bind to cellular proteins and induce immune activation (e.g., Env-binding to CD4 and/or CCR5; nef ability, or lack thereof, to down-modulate CD3-TCR)
3. Translocation of microbial products across the intestinal mucosa with resultant stimulation of TLR-2/4/5/6 on numerous immune cell types
4. Concomitant infections, either opportunistic or nonopportunistic (i.e., intestinal helminths)
5. Increased levels of pro-inflammatory and/or pro-apoptotic cytokines resulting in activation of bystander (i.e., non-HIV specific) T cells
6. Depletion and/or dysfunction of regulatory CD4 T cells (T_{reg}).

AIDS 22(4) 439-446, 2008
Immune Reconstitution Disease (IRD)
(Immune Reconstitution Inflammatory Syndrome (IRIS))

Immune reconstitution - reversal of HIV-related immune system decline to increase functional CD4+ T cells

Anti-retroviral treatment triggers inflammatory responses to pathogens - hypersensitivity reaction

Many cases resolve within a few weeks
Diseases and Pathogens Associated With IRIS

- Castleman disease
- *Cryptococcus neoformans*
- cytomegalovirus (CMV)
- eosinophilic folliculitis
- Graves' disease
- Hansen's disease (leprosy)
- hepatitis B virus (HBV)
- hepatitis C virus (HCV)
- herpes simplex virus (HSV)
- herpes zoster (shingles)
- *Histoplasma capsulatum*
- human papillomavirus (HPV)
- Kaposi's sarcoma (KS)
- *Mycobacterium avium* complex (MAC)
- myopathy
- non-Hodgkin's lymphoma (NHL)
- *Pneumocystis carinii (P. jiroveci)* pneumonia (PCP)
- progressive multifocal leukoencephalopathy
- sarcoidosis
- systemic lupus erythematosus
- tuberculosis
Opportunistic Infections

• Protozoa
 – Cryptosporodium

• Bacteria
 – Toxoplasma, Mycobacterium avium, Nocardia, Salmonella

• Fungi
 – Candida, Cryptococcus neoformans, Coccidioides immitis, Histoplasma capsulatum, Pneumocystis (carinii) jiroveci

• Viruses
 – Cytomegalovirus, herpes simplex, varicella-zoster
Laboratory Diagnosis

• Serology is the usual method for diagnosing HIV infection. Serological tests can be divided into screening and confirmatory assays.

• Screening assays - ELISAs are the most frequently used screening assays. The sensitivity and specificity approaches 100% but false positive and negative reactions occur.

• Confirmatory assays - Western blot is regarded as the gold standard for serological diagnosis. However, its sensitivity is lower than screening ELISAs.
Diagnosis in Children

- Positive HIV antibody test - not used in children <18 months because of the possibility of maternal antibodies - use PCR - treat with triple therapy.
 - Controversy - should HIV negative infants with HIV-positive mothers be treated? Early treatment of asymptomatic infants prevents or delays progression of the disease

- Positive HIV antibody test in child >18 months usually indicates infection
Treatment and Prevention of AIDS and Vaccine Development

Antiviral drugs used in combination (HAART)
 Nucleoside analogues - inhibit reverse transcriptase activity
 Viral protease inhibitors - block processing of precursor proteins into mature viral capsid and core proteins
 Newer reverse transcriptase inhibitors

NEW RECOMMENDATION: TREAT BEFORE HAART IS ABSOLUTELY NECESSARY

Inhibitors of viral entry - chemokine receptor antagonists and inhibitors of viral-cell membrane fusion

Integrase inhibitors - prevent integration of proviral DNA into host DNA

Prevention - screening blood supply, public health awareness

Vaccine development

Antibiotics
Box 1 | Challenges in the development of a prophylactic HIV-1 vaccine

1. Extensive viral clade and sequence diversity.
2. Early establishment of latent viral reservoirs.
3. Immune correlates of protection unclear.
5. Antibody responses typically type-specific.
6. No method exists to elicit broadly reactive neutralizing antibodies.
7. Attenuated viruses unsafe for human use.
8. Lack of a small-animal model.
9. Little pharmaceutical interest.
<table>
<thead>
<tr>
<th>Generic name (other names)</th>
<th>Typical dosage</th>
<th>Some potential side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVERSE TRANSCRIPTASE INHIBITORS: NUCLEOSIDE ANALOGUES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Didanosine (Videx, ddI)</td>
<td>2 pills, 2 times a day on empty stomach</td>
<td>Nausea, diarrhea, pancreatic inflammation, peripheral neuropathy</td>
</tr>
<tr>
<td>Emtricitabine (Emtriva, FTC)</td>
<td>1 pill, 1 time a day</td>
<td>Headache, diarrhea, nausea, rash</td>
</tr>
<tr>
<td>Lamivudine (Epivir, 3TC)</td>
<td>1 pill, 2 times a day</td>
<td>Usually none</td>
</tr>
<tr>
<td>Stavudine (Zerit, d4T)</td>
<td>1 pill, 2 times a day</td>
<td>Peripheral neuropathy</td>
</tr>
<tr>
<td>Zalcitabine (Hivid, ddC)</td>
<td>1 pill, 3 times a day</td>
<td>Peripheral neuropathy, mouth inflammation, pancreatic inflammation</td>
</tr>
<tr>
<td>Zidovudine (Retrovir, AZT, ZDV)</td>
<td>1 pill, 2 times a day</td>
<td>Nausea, headache, anemia, neutropenia (reduced levels of neutrophil white blood cells), weakness, insomnia</td>
</tr>
<tr>
<td>Pill containing lamivudine and zidovudine (Combivir)</td>
<td>1 pill, 2 times a day</td>
<td>Same as for zidovudine</td>
</tr>
<tr>
<td>Abacavir (Ziagen)</td>
<td>2 pills, 1 time a day</td>
<td>Nausea, vomiting, diarrhea, lactic acidosis (severe liver disease)</td>
</tr>
<tr>
<td>Tenofovir (Viread)</td>
<td>1 pill, 1 time a day</td>
<td>Nausea, vomiting, increased risk of bone breakage</td>
</tr>
<tr>
<td>REVERSE TRANSCRIPTASE INHIBITORS: NONNUCLEOSIDE ANALOGUES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delavirdine (Rescriptor)</td>
<td>4 pills, 3 times a day (mixed into water); not within an hour of antacids or didanosine</td>
<td>Rash, headache, hepatitis</td>
</tr>
<tr>
<td>Nevirapine (Viramune)</td>
<td>1 pill, 2 times a day</td>
<td>Rash, hepatitis</td>
</tr>
<tr>
<td>Efavirenz (Sustiva)</td>
<td>1 pill, 1 time a day</td>
<td>Dizziness, insomnia, rash</td>
</tr>
<tr>
<td>PROTEASE INHIBITORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indinavir (Crixivan)</td>
<td>2 pills, 3 times a day on empty stomach or with a low-fat snack and not within 2 hours of didanosine</td>
<td>Kidney stones, nausea, headache, blurred vision, dizziness, rash, metallic taste in mouth, abnormal distribution of fat, elevated triglyceride and cholesterol levels, glucose intolerance</td>
</tr>
<tr>
<td>Nelfinavir (Viracept)</td>
<td>3 pills, 3 times a day with some food</td>
<td>Diarrhea, abnormal distribution of fat, elevated triglyceride and cholesterol levels, glucose intolerance</td>
</tr>
<tr>
<td>Ritonavir (Norvir)</td>
<td>6 pills, 2 times a day (or 4 pills, 2 times a day if taken with saquinavir) with food and not within 2 hours of didanosine</td>
<td>Nausea, vomiting, diarrhea, abdominal pain, headache, pricking sensation in skin, hepatitis, weakness, abnormal distribution of fat, elevated triglyceride and cholesterol levels, glucose intolerance</td>
</tr>
<tr>
<td>Saquinavir (Invirase, a hard-gel capsule; Fortovase, a soft-gel capsule)</td>
<td>6 pills, 3 times a day (or 2 pills, 2 times a day if taken with ritonavir) with a large meal</td>
<td>Nausea, diarrhea, headache, abnormal distribution of fat, elevated triglyceride and cholesterol levels, glucose intolerance</td>
</tr>
<tr>
<td>Atazanavir (Reyataz)</td>
<td>2 pills, 1 time a day</td>
<td>Must be used with at least two other drugs</td>
</tr>
<tr>
<td>Fosamprenavir calcium? (Lexiva)</td>
<td>2 pills, 2 times a day</td>
<td>Appetite loss, malaise, diarrhea, nausea, vomiting</td>
</tr>
<tr>
<td>FUSION INHIBITORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enfuvirtide (Fuzeon, T-20)</td>
<td>Subcutaneous injection</td>
<td>Soreness at injection site, dizziness, loss of sleep, numbness in feet and legs</td>
</tr>
</tbody>
</table>

Table 20-5
*Kuby IMMUNOLOGY, Sixth Edition
© 2007 W. H. Freeman and Company*
Therapeutic Strategies to Modulate Expression of Chemokine Receptors

• Monoclonal abs to receptor
• Chemokines that stay within the cytoplasm are able to capture and bind to their corresponding receptor on the way to the cell surface.
• Short interfering RNA (siRNA) - selectively inactivate target genes