Hypersensitivity Reactions (Types I, II, III, IV)

April 15, 2009

Inflammatory response - local, eliminates antigen without extensively damaging the host's tissue.

Hypersensitivity - immune & inflammatory responses that are harmful to the host (von Pirquet, 1906)

Allergen Fcreceptor for IgE Allergen- specific IgE Degranulation Type I	ADCC Fc receptor Cyto- toxic Surface cell Target antigen cell Complement activation Immune complex Type II	Immune complex Complement activation Neutrophil Type III	Antigen Sensitized T _H 1 Cytokines Activated macrophage Type IV
IgE-Mediated Hypersensitivity	lgG- or lgM-Mediated Cytotoxic Hypersensitivity	Immune Complex–Mediated Hypersensitivity	Cell-Mediated Hypersensitivity
Ag induces cross-linking of IgE bound to mast cells and	Ab directed against cell surface antigens meditates cell destruction via complement	Ag-Ab complexes deposited in various tissues induce complement activation and	Sensitized T _H 1 cells shown above release cytokines that activate macrophages or T _C cells that
basophils with release of vasoactive mediators.	activation or ADCC.	an ensuing inflammatory response mediated by massive infiltration of neutrophils.	mediate direct cellular damage. T _H 2 cells and CTLs mediate similar responses.

Figure 1-4 part 3 of 3 Immunobiology, 6/e. (© Garland Science 2005)

Characteristic	Mast cells
Origin of precursor	CD34+ hematopoietic progenitor cells
Major site of maturation	Connective tissue
Cells in circulation	No
Mature cells recruited into tissues from circulation	No
Mature cells residing in connective tissue	Yes
Proliferative ability of mature cells	Yes
Life span	Weeks to months
Major development factor (cytokine)	Stem cell factor
Expression of FccRI	High levels
Major granule contents	Histamine, heparin and/ or chondroitin sulfate, proteases

Type I hypersensitivity response

Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H.Freeman and Company

FceRI: High-affinity IgE receptor

Initiation of degranulation

Figure 15-5 Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

Figure 15-6 Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

Larche et al. Nat. Rev. Immunol 6:761-771, 2006

C Late phase: allergic inflammation

Larche et al. Nat. Rev. Immunol 6:761-771, 2006

Copyright © 2006 Nature Publishing Group Nature Reviews | Immunology

TABLE 15-3 Principal mediators involved in type I hypersensitivity		
Mediator	Effects	
	PRIMARY	
Histamine, heparin	Increased vascular permeability; smooth muscle contraction	
Serotonin (rodents)	Increased vascular permeability; smooth muscle contraction	
Eosinophil chemotactic factor (ECF-A)	Eosinophil chemotaxis	
Neutrophil chemotactic factor (NCF-A)	Neutrophil chemotaxis	
Proteases (tryptase, chymase)	Bronchial mucus secretion; degradation of blood vessel basement membrane; generation of complement split products	
	SECONDARY	
Platelet-activating factor	Platelet aggregation and degranulation; contraction of pulmonary smooth muscles	
Leukotrienes (slow reactive substance of anaphylaxis, SRS-A)	Increased vascular permeability; contraction of pulmonary smooth muscles	
Prostaglandins	Vasodilation; contraction of pulmonary smooth muscles; platelet aggregation	
Bradykinin	Increased vascular permeability; smooth muscle contraction	
Cytokines		
IL-1 and TNF- α	Systemic anaphylaxis; increased expression of CAMs on venular endothelial cells	
IL-4 and IL-13	Increased IgE production	
IL-3, IL-5, IL-6, IL-10, TGF-β, and GM-CSF	Various effects (see Table 12-1)	

Table 15-3Kuby IMMUNOLOGY, Sixth Edition© 2007 W. H. Freeman and Company

Abbas, Lichtman & Pillai, 19-8

CONT. H. DUST MITE GRASS SHRUB TREE

Figure 15-10 Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

Factors in the development of allergic diseases

- Geographical distribution
- Environmental factors climate, air pollution, socioeconomic status
- Genetic risk factors
- "Hygiene hypothesis"
 - Older siblings, day care
 - Exposure to certain foods, farm animals
 - Exposure to antibiotics during infancy
- Cytokine milieu

TABLE 15-1 Common anergens associated w type I hypersensitivity	ommon allergens associated with ype I hypersensitivity	
Proteins Foods		
Foreign serum Nuts		
Vaccines Seafood		
Eggs		
Plant pollens Peas, beans		
Rye grass Milk		
Ragweed		
Timothy grass Insect products		
Birch trees Bee venom		
Wasp venom		
Drugs Ant venom		
Penicillin Cockroach calyx		
Sulfonamides Dust mites		
Local anesthetics		
Salicylates Mold spores		
Animal hair and dar	nder	
Latex		

Table 15-1Kuby IMMUNOLOGY, Sixth Edition© 2007 W. H. Freeman and Company

IgE-mediated diseases in humans

- Systemic (anaphylactic shock)
- Asthma
 - Classification by immunopathological phenotype can be used to determine management strategies
- Hay fever (allergic rhinitis)
- Allergic conjunctivitis
- Skin reactions
- Food allergies

Diseases in Humans (I)

 Systemic anaphylaxis - potentially fatal - due to food ingestion (eggs, shellfish, peanuts, drug reactions) and insect stings - characterized by airway obstruction and a sudden fall in blood pressure.

Diseases in Humans (II) Bronchial asthma

- Chronic inflammation
 - Intermittent & reversible airway obstruction
 - Chronic bronchial inflammation with eosinophil infiltration
 - Bronchial smooth muscle hypertrophy and hyperreactivity
- Dominated by the presence of eosinophils, CD4+ T lymphocytes (Th2), and a large proportion of CD4+ NKT cells expressing an invariant T cell receptor that recognizes glycolipid antigens.

Kumar et al, Robbins and Cotran Pathologic Basis of Disease

© 2007 W. H. Freeman and Company

Mediators and treatment of asthma

Copyright © 2003, Elsevier Science (USA). All Rights Reserved. 19-10

Anti-IL-13 reduce mucus overproduction and eosinophilia

Anti-chemokine receptors: CCR3, CCR4, CCR8 on Th2 cells.

Anti-RANTES or -eotaxin abs to prevent recruitment of eosinophils

Mechanism of action of some drugs used to treat type I hypersensitivity
Action
Block H ₁ and H ₂ receptors on target cells m Blocks Ca ²⁺ influx into mast cells
Prolongs high cAMP levels in mast cells by inhibiting phosphodiesterase, which cleaves cAMP to 5'-AMP*
Stimulates cAMP production by binding to β-adrenergic receptors on mast cells [*]
Reduces histamine levels by blocking con- version of histidine to histamine and stimulates mast-cell production of cAMP [*]

*Although cAMP rises transiently during mast-cell activation, degranulation is prevented if cAMP levels remain high.

Diseases in Humans (III)

• Upper respiratory tract

 Allergic rhinitis (hay fever) - reactions to plant pollen or house dust mites in the upper respiratory tract - mucosal edema, mucus secretion, coughing, sneezing, difficult in breathing - also associated with allergic conjunctivitis. Some evidence that asthma can develop in patients who have allergic rhinitis. Treatment - antihistamines

Gastrointestinal tract

- Result from release of mediators from intestinal mucosal and submucosal mast cells following sensitization through the g.l. route of exposure - enhanced peristalsis, increased fluid secretion from intestinal cells, vomiting, and diarrhea. This is not the same as an anaphylactic response. Reactions usually begin in childhood - often remit in late childhood or in adulthod.
- Skin
 - Urticaria (wheal and flare) mediated by histamine.
 - Eczema late-phase reaction to allergen in the skin inflammation - can be treated with steroids.

Urticaria

Copyright Slice of Life & Suzanne S. Stensaas - obtained from PEIR, Dept. of Pathology, UAB

Atopic Eczema

Copyright Slice of Life & Suzanne S. Stensaas - obtained from PEIR, Dept. of Pathology, UAB

Radioallergosorbent Test (RAST)

Figure 15-11b Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company 1st study of allergen-specific immunotherapy:

Noon, L. Prophylactic inoculation against hay fever Lancet I, 1572-1573 (**1911**)

Subcutaneous or sublingual administration

Peanut Flour May Ease Peanut Allergy

from WebMD — a health information Web site for patients

February 24, 2009. Eating a tiny bit of peanut flour every day may increase peanut tolerance in children who are allergic to peanuts, a new study shows.

Each child went home with instructions to eat 5 mg of peanut flour mixed with yogurt each day, gradually adding more peanut flour over the next six weeks.

Protective role of IgE

Copyright @ 2003, Elsevier Science (USA). All Rights Reserved.

Type II hypersensitivity

- Mediated by abs directed towards antigens present on cell surfaces or the extracellular matrix (type IIA) or abs with agonistic/antagonistic properties (type IIB).
- Mechanisms of damage:
 - Opsonization and complement- and Fc receptormediated phagocytosis
 - Complement- and Fc receptor-mediated inflammation
 - Antibody-mediated cellular dysfunction

© Elsevier 2005

Examples: autoimmune hemolytic anemia, autoimmune thrombocytopenic purpura

Kumar et al. Robbins and Cotran Pathologic Basis of Disease

© Elsevier 2005

Examples: pemphigus vulgaris, Goodpasture syndrome

Kumar et al. Robbins and Cotran Pathologic Basis of Disease

Kumar et al. Robbins and Cotran Pathologic Basis of Disease. Elsevier 2005.

ANTI-GBM Endothelium Antibody Antigen В

Kumar et al. Robbins and Cotran Pathologic Basis of Disease. Elsevier 2005

Kumar et al. Robbins and Cotran Pathologic Basis of Disease. Elsevier 2005.

© Elsevier 2005

Examples: Graves disease (hyperthyroidism), myasthenia gravis

Kumar et al. Robbins and Cotran Pathologic Basis of Disease

Non-autoimmune type II reactions

- Transfusion reactions (ABO incompatibility
- Hemolytic disease of the newborn (erythroblastosis fetalis)

DEVELOPMENT OF ERYTHROBLASTOSIS FETALIS (WITHOUT RHOGAM)

PREVENTION (WITH RHOGAM)

Figure 15-14 Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

Type III hypersensitivity (immune complex disease)

Mechanisms of Ab deposition Effector mechanisms of tissue injury

Abbas and Lichtman, Cellular and Molecular Immunology (5th edition). Elsevier 2003.

Serum sickness - a transient immune complexmediated syndrome

Figure 10-32 The Immune System, 2/e (© Garland Science 2005)

Figure 15-15 Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company

Formation of circulating immune complexes contributes to the pathogenesis of:

- Autoimmune diseases
 - SLE (lupus nephritis), rheumatoid arthritis
- Drug reactions
 - Allergies to penicillin and sulfonamides
- Infectious diseases
 - Poststreptococcal glomerulonephritis, meningitis, hepatitis, mononucleosis, malaria, trypanosomiasis

Kumar et al. Robbins and Cotran Pathologic Basis of Disease. Elsevier 2005.

Kumar et al. Robbins and Cotran Pathologic Basis of Disease. Elsevier 2005.

Balkwill & Rolph, Germ Zappers, Cold Spring Harbor Laboratory Press, 2001

Killer T lymphocytes

Balkwill & Rolph, Germ Zappers, Cold Spring Harbor Laboratory Press, 2001

Type IV hypersensitivity (DTH)

Kumar et al. Robbins and Cotran Pathologic Basis of Disease. Elsevier 2005

TABLE 15-6

Intracellular pathogens and contact antigens that induce delayed-type (type IV) hypersensitivity

Intracellular bacteria *Mycobacterium tuberculosis* virus

Mycobacterium leprae Listeria monocytogenes Brucella abortus

Intracellular fungi Pneumocystis carinii Candida albicans Histoplasma capsulatum Cryptococcus neoformans Intracellular parasites Leishmania sp. Intracellular viruses Herpes simplex

> Variola (smallpox) Measles virus

Contact antigens Picrylchloride Hair dyes Nickel salts Poison ivy Poison oak

Autoimmune diseases mediated by direct cellular damage

Top - Goldsby et al, Figure 20-1- Hashimoto's thyroiditis Bottom - Goldsby et al, Figure 20-3 - Type I diabetes

Figure 15-17a Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

Figure 15-17b Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

Figure 10-36 The Immune System, 2/e (© Garland Science 2005)

© 2007 W.H. Freeman and Company

Clinical and patch test appearances of contact hypersensitivity

Tuberculin-type hypersensitivity reaction

Roitt 24.8

DTH in the skin

© Elsevier 2005

Kumar et al. Robbins and Cotran Pathologic Basis of Disease. Elsevier 2005.

Uses of tuberculin-type reactions

Demonstration of past infection with a microorganism.

Assessment of cell-mediated immunity.

Figure 15-18 Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company

The importance of TNF- α in the formation of granulomas

Diseases associated with granuloma formation:

- Leprosy
- Tuberculosis
- Schistosomiasis
- Sarcoidosis
- Crohn's disease

TNF superfamily involvement in granuloma formation and resistance to mycobacterial infection. Reported: Dark gray ligands and receptors are essential for normal granuloma formation and sustained resistance to mycobacterial infection. Pale gray ligands and receptors are required for optimal protective immunity to mycobacterial infection. Unfilled ligands and receptors were not required for normal granuloma formation and expression of protective immunity to mycobacterial infection. Unreported: Ligands and receptors whose function in granuloma formation and resistance to mycobacterial infection has not yet been reported.

Saunders and Britton. Immunol. Cell Biol. 85: 103-111, 2007.

Chemokine expression in tissues from *M. tuberculosis*-infected individuals

<i>In vivo/</i> ex vivo <i>sample</i>	Chemokines
Pleura	MIP-1 ^α , MIP-1 β
	Mig, RANTES IP-10, MCP-1
	MCP-1, MIP-1 [«] , MIP-18
BALF	IP-10, IL-8 MCP-1, MCP- 3, MCP-4 RANTES
	MIP-1 ^{ee} Exotaxin
Lung	MCP-1, MCP- 3, MCP-4, IP- 10
	Eotaxin
Alveolar macrophages	CCR5 RANTES MIP-1 ^a MCP-1
Plasma	IL-8, IP-10
	MCP-1, RANTES
	MIP-1 ^a , MIP-1
	RANTES
	MCP-1
PBMC	MIP-1 [«] RANTES
	MCP-1
	IL-8
Cerebral spinal fluid	MCP-1, IL-8, MIP-1 ^a

Saunders & Britton. Immunol. Cell Bioll. 85:103-111, 2007

Tuberculosis

Roitt 24.23

Sarcoidosis (lymph node)

Roitt 24.25

Skin Reactions

Immediate

Arthus

DTH

Roitt 23.9