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lCentre de Geńomique Fonctionnelle, Plateforme Proteóme, Universite ́ de Bordeaux, Bordeaux33000, France
mComputational Systems Biochemistry Research Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152
Martinsried, Germany
nMRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
oNational Institute of Biological Sciences, Beijing 7 Science Park Road, ZGC Life Science Park, 102206 Beijing, China
pDepartment of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
qDepartment of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, 221 00 Lund, Sweden

Received: February 4, 2019
Accepted: May 2, 2019
Published: May 2, 2019

Perspective

pubs.acs.org/acCite This: Anal. Chem. 2019, 91, 6953−6961

© 2019 American Chemical Society 6953 DOI: 10.1021/acs.analchem.9b00658
Anal. Chem. 2019, 91, 6953−6961

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

13
0.

21
9.

8.
25

0 
on

 A
ug

us
t 1

4,
 2

01
9 

at
 2

0:
13

:2
4 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

pubs.acs.org/ac
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.analchem.9b00658
http://dx.doi.org/10.1021/acs.analchem.9b00658
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


rInstitute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac
10, 08028 Barcelona, Spain
sInstitute for Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg,
Kurt-Mothes-Strasse 3a, 06120 Halle/Saale, Germany
tDepartment of Physiology & Biophysics, University of California, Irvine, California 92697, United States
uInterdisciplinary Research Center HALOmem, Institute for Biochemistry and Biotechnology, Charles Tanford Protein Center,
Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle/Saale, Germany
vBiomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for
Pharmaceutical Sciences, University of Utrecht and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The
Netherlands
wGene Center Munich, Department of Biochemistry, Faculty of Chemistry and Pharmacy, Ludwig Maximilians University of
Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
xInstitute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
yInstitute of Microbiology, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
zLeibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
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ABSTRACT: The number of publications in the field of
chemical cross-linking combined with mass spectrometry
(XL-MS) to derive constraints for protein three-dimensional
structure modeling and to probe protein−protein interactions
has increased during the last years. As the technique is now
becoming routine for in vitro and in vivo applications in
proteomics and structural biology there is a pressing need to
define protocols as well as data analysis and reporting formats.
Such consensus formats should become accepted in the field
and be shown to lead to reproducible results. This first,
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community-based harmonization study on XL-MS is based on the results of 32 groups participating worldwide. The aim of this
paper is to summarize the status quo of XL-MS and to compare and evaluate existing cross-linking strategies. Our study
therefore builds the framework for establishing best practice guidelines to conduct cross-linking experiments, perform data
analysis, and define reporting formats with the ultimate goal of assisting scientists to generate accurate and reproducible XL-MS
results.

Mass spectrometry (MS) is becoming increasingly
popular in the field of structural biology, with great

implications for solving important biological questions. A
central technique in structural MS is chemical cross-linking
combined with MS (XL-MS). Since 2000, XL-MS and
computational modeling has advanced from investigating
three-dimensional structures of isolated proteins to decipher-
ing protein interaction networks.1−4 In the field of integrated
structure analysis, XL-MS is often used in conjunction with
cryo-electron microscopy. As the chemical XL-MS approach
allows the capture of transient and weak interactions, it is now
becoming a routine technique for unraveling protein
interaction networks in their natural cellular environment.5

The knowledge obtained will significantly advance our
understanding of the structure of functional complexes, the
topology of cellular networks and molecular details underlying
human pathologies.
Briefly, the XL-MS approach relies on adding a chemical

reagent to a protein solution connecting two functional groups
of amino acid side chains. Cross-linker molecules consist of
two reactive groups that are separated via a spacer of defined
length that allow to derive distance information on a protein or
a protein assembly. The cross-linked residues are usually
identified after enzymatic digestion of the covalently connected
protein(s) using LC/ESI-MS/MS (liquid chromatography/
electrospray ionization-tandem mass spectrometry) and the
resulting fragment ion spectra are computationally assigned to
the cross-linked peptides. The distance constraints imposed by
the chemical cross-linker on the protein’s tertiary structure
serve as a basis for subsequent computational modeling studies
to derive three-dimensional structural models (Scheme S1).
XL-MS can be applied to both proteins and protein complexes
and in the case of protein assemblies, the distance constraints
can be used to map the subunit topology. XL-MS is now
increasingly being used for deriving protein−protein inter-
action maps, both in vitro and in vivo, where interacting
proteins are covalently connected by the cross-linking
reaction.6−13

The wide acceptance of XL-MS by the proteomics and
structural biology communities reflects the increasing
importance of cross-linking data for elucidating protein
structures and protein−protein interactions. However, the
growth of the user base brings about challenges of its own:
Even a relatively superficial glance at the literature shows a
huge diversity of cross-linkers, experimental workflows, and
computational pipelines. Moreover, the information provided
in scientific research articles that contain cross-linking data can
range from being quite detailed to very brief.
The heterogeneity of cross-linking protocols has mainly

emerged from the use of different cross-linking chemistries and
different designs of the corresponding cross-linker (e.g.,
noncleavable/cleavable, isotope-coded, or affinity-tagged re-
agents). This, in turn, necessitated individual software
solutions specifically tailored to the analysis of data from the
experimental workflow. The most common database search
engines used in proteomics are not directly suitable for

interpreting mass spectra from cross-linked peptides. There-
fore, the majority of computational solutions have emerged
from laboratories that pioneered the application of XL-MS and
created tools specifically tailored for the analysis of cross-linked
peptides. Together with a current lack of formal or even
informal reporting standards, the present state of XL-MS may
confuse researchers that are interested in interpreting results
from XL-MS studies or in adopting the technology. Currently,
it is not clear which strategies are most suitable in general or
for a particular application, which makes it challenging to
objectively compare results obtained by different groups.
Certainly, the challenges summarized above resemble those

of other disciplines. In particular, scientists active in “conven-
tional” proteomics research have tried to address the very same
issues over the past decade. Interlaboratory and software
comparison studies have been performed for different
experimental strategies, including data-dependent acquisi-
tion,14 selected reaction monitoring,15−18 and most recently,
data-independent acquisition.19,20 In addition, regular com-
parative studies have been organized by the Association of
Biomolecular Resource Facilities (ABRF; https://abrf.org/
research-group/proteomics-research-group-prg and https://
abrf.org/research-group/proteomics-standards-research-group-
sprg). Together, these studies revealed limitations in
commonly used experimental and computational workflows,
but on the other hand also provided evidence for the
robustness of a particular technique when implemented in
different laboratories according to standard operating
procedures.
Standardized file formats and reporting guidelines for

proteomics have been developed under the auspices of the
Proteomics Standards Initiative (PSI) of the Human Proteome
Organization (http://www.psidev.info).21 For example, as far
back as 2007, the first recommendations for minimum
reporting standards in proteomics (Minimum Information
About a Proteomics Experiment, MIAPE) have been made,22

which have been followed by detailed guidelines of several
proteomics journals. PSI has also formalized open-file formats,
such as the mzML format for raw MS data23 and the
mzIdentML format for protein identifications.24 Such guide-
lines and open data formats have also led to an increase in the
deposition of proteomics data in open data repositories such as
the PRoteomics IDEntifications (PRIDE) archive, hosted by
the European Bioinformatics Institute (https://www.ebi.ac.uk/
pride/archive/),25 via the ProteomeXchange initiative
(https://www.proteomexchange.org).26

Initiatives for establishing standards and recommendations
of best practices within structural MS techniques, ion mobility-
MS (https://chemrxiv.org/articles/Recommendations_for_
R epo r t i n g_ I o n_Mob i l i t y_Ma s s _S p e c t r ome t r y _
Measurements/7072070), hydrogen/deuterium exchange
(manuscripts in preparation), and native MS are or have
recently emerged. Likewise, there is also a clear need for the
objective assessment of the methods and reporting standards
within the field of XL-MS. For this purpose, several researchers
active in the field of XL-MS decided to start a community-
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organized effort with the goal of providing a first overview of
common procedures in XL-MS to generate the basis for best
practices in the field.
In this first interlaboratory effort, 32 groups worldwide

contributed, delivering a total of 58 cross-linking data sets. The
data reflect the great diversity of experimental and computa-
tional strategies employed, and to our knowledge, this is the
first comprehensive study with the aim to harmonize the XL-
MS field.

■ RESULTS
Study Design. We opted for a simple study design to

encourage participation from as many laboratories as possible,
including those with currently only little experience in XL-MS.
Invitations were sent out to research groups known to be active
in the field from their published work and to attendants of the
Symposium of Structural Proteomics (SSP, http://www.
structuralproteomics.net/) meeting series. The guidelines
were kept quite simple, and each participant was provided
with a template spreadsheet to document their method and
report their results (Supporting Information). Bovine serum
albumin (BSA), a protein with a molecular weight of ∼66 kDa,
was selected as the study system. We requested that a certain
product from a widely available supplier should be used, and it
was specified to use a BSA concentration of 10 μM. Apart from
these restrictions, we left the contributing laboratories full
freedom to choose the experimental and computational
strategies of their choice. This included, among other
parameters, flexibility regarding the choice of cross-linking
reagent and its concentration, buffer composition and pH,
reaction time and temperature, post-cross-linking sample
processing (digestion protocol, optional fractionation, and
enrichment of cross-linked products), conditions for LC/MS
analysis, and data analysis procedures (choice of software,
search parameters, validation of the results). In short, we
expected that participants would use the typical XL-MS
workflows established in their laboratories. The protocols used
by the individual participating laboratories were collected and
analyzed in the Sinz lab and are summarized in the Supporting
Information.
For data analysis, we provided the amino acid sequence of

mature BSA after cleavage of the signal peptide and propeptide
sequences (residues 25−607 of the UniProt entry P02769,
https://www.uniprot.org/uniprot/P02769) to ensure a uni-
form numbering scheme. Finally, we encouraged participants
to perform at least three replicates. As mentioned above, we
provided a template spreadsheet (Supporting Information)
that needed to be completed by the participants before a data
set would be considered for inclusion in the detailed
assessment of the results. An overview of the data sets
provided by different laboratories is presented in Figure 1.
Protein System. BSA was selected as model protein for

this study as it is a globular and stable protein that is readily
available at low cost. Moreover, the three-dimensional
structure of BSA is well-known, and we selected the Protein
Data Bank entry 4F5S (https://www.rcsb.org/structure/4F5S)
for further interpretation of the results. As BSA possesses a
tendency toward forming dimers, this has to be considered
when interpreting the results (see also below).
Cross-Linking Reagents. As outlined above, the partic-

ipants of this study were free to choose the cross-linking
principle(s) on their own (Table S1, Supporting Information).
The majority of groups decided to use noncleavable,

homobifunctional, amine-reactive N-hydroxysuccinimide
(NHS) cross-linkers, i.e., bis(sulfosuccinimidyl)suberate
(BS3) or disuccinimidylsuberate (DSS) (Figure 2a). Both
cross-linkers only differ by a sulfonic acid group that is
incorporated for increased water solubility and bridge a
distance of 11.4 Å, resulting in Cα−Cα distances of ∼27 Å
to be cross-linked.27 MS-cleavable cross-linkers, such as
disuccinimidylsulfoxide (DSSO) and disuccinimidyldibutyric
urea (DSBU), are increasingly being used as they allow a
targeted identification of cross-linked product based on
characteristic reporter ions generated during MS/MS experi-
ments. MS-cleavability as a cross-linker feature is essential to

Figure 1. Overview of data sets provided by the participants of this
study: 32 groups participated in this study, yielding 58 separate cross-
linking workflows. Nine data sets had to be excluded due to missing
replicates and nonuniform conditions, resulting in a total of 49 data
sets that were further considered. Several workflows contain both in-
solution (47 samples) as well as in-gel digestion (10 samples) as
processing methods. The samples were considered only once during a
workflow analysis.

Figure 2. (a) Cross-linking reagents used in this study; noncleavable
cross-linkers are presented in red, MS-cleavable cross-linkers are
shown in blue, (b) reactivity, and (c) spacer length. The cross-linkers
used in this study are BS3 (bis(sulfosuccinimidyl)suberate, DSS
(disuccinimidylsuberate), DSP (dithiobis(succinimidylpropionate)),
DMTMM (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholi-
nium chloride) with and without PDH (pimelic acid dihydrazide),
sulfo-SDA (sulfosuccinimidyl 4,4′-azipentanoate), CBSS (carboxy-
benzophenone sulfosuccinimide), DSSO (disuccinimidylsulfoxide),
DSBU (disuccinimidyldibutyric urea), BDP-NHP (N-hydroxyphtha-
lamide ester of biotin aspartate proline), CBDPS (cyanurbiotindi-
mercaptopropionyl succinimide), DC4 (1,4-bis(4-((2,5-dioxopyrroli-
din-1-yl)oxy)-4-oxobutyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium),
and MC4 (N,N′-bis(4-((2,5-dioxopyrrolidin-1-yl)oxy)-4-oxobutyl)-
morpholine).

Analytical Chemistry Perspective

DOI: 10.1021/acs.analchem.9b00658
Anal. Chem. 2019, 91, 6953−6961

6956

http://www.structuralproteomics.net/
http://www.structuralproteomics.net/
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b00658/suppl_file/ac9b00658_si_002.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b00658/suppl_file/ac9b00658_si_006.zip
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b00658/suppl_file/ac9b00658_si_006.zip
https://www.uniprot.org/uniprot/P02769
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b00658/suppl_file/ac9b00658_si_002.xlsx
https://www.rcsb.org/structure/4F5S
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b00658/suppl_file/ac9b00658_si_001.pdf
http://dx.doi.org/10.1021/acs.analchem.9b00658


reduce the search space in conducting proteome-wide cross-
linking studies. The vast majority of cross-linkers used herein
target amine groups in proteins, i.e., lysine side chains, while
carboxylic acid groups, such as aspartic and glutamic acid
residues, are less frequently targeted (Figure 2b). The main
spacer lengths of the cross-linkers are determined by the three

most abundant cross-linkers used in this study, BS3 and DSS
(both 11.4 Å), DSBU (12.5 Å), and DSSO (10.1 Å) (Figure
2c).
Reaction Conditions. The reaction conditions were also

kept completely open to the participants, including cross-
linking reaction time, temperature, cross-linker excess, and pH
value of the cross-linking solution (Figure 3). Not surprisingly,
the pH value of the cross-linking reaction mixture was kept
around pH 7.4 to 7.5 in the majority of experiments in order to
resemble the physiological pH situation. A pH value of 8.0 that
was also used in some experiments has the advantage of
enhancing the reactivity of NHS esters with nucleophiles. The
temperature was kept to 20, 25, or 37 °C in the majority of
experiments, with lower temperature being applied only by a
few groups. For BSA, a temperature of 37 °C certainly does not
present a problem as it is a stable, globular protein, but for
delicate and unstable proteins one should take care to conduct
the cross-linking reaction at lower temperatures.
Instrument Platforms and Settings Used to Generate

XL-MS Data. The overwhelming majority of cross-linking data
were generated on orbitrap mass spectrometers (Figure 4).
Only two FTICR (SolariX and Velos FTICR) mass

spectrometers and one Q-TOF (Synapt G2 SI) instrument
were employed (Figure 4a). All groups used LC/ESI-MS/MS
analysis, applying for most experiments a resolving power of
60 000 or 120 000 (at m/z 200 or 400, as specified by the
manufacturer Thermo Fisher Scientific for orbitrap instru-

ments) (Figure 4b). For MS/MS experiments, a resolving
power of 15 000 or 30 000 was employed in most cases (Figure
4c). Details on enrichment of cross-linked species, considered
charge states, fragmentation methods, and MS3 resolution are
presented in the Supporting Information (Figure S1).

Figure 3. (a) Time, temperature, and cross-linker excess (XL-fold)
were set as variable parameters, presented as gray spheres. The
colored dots are projections of the 3D space onto 2D planes. (b) pH
values of the cross-linking reactions ranged between 7.0 and 8.2.

Figure 4. LC/MS/MS conditions applied. (a) MS instrumentation,
(b) MS resolving power, and (c) MS/MS resolving power. Resolving
power is defined at m/z 200 for orbitrap instruments, while for ICR
instruments it is defined at m/z 400. Please note that several research
groups generated data sets with different instruments and settings.

Figure 5. (a) Software tools used in this study (a complete summary
is found in Table S2, Supporting Information). Red bars indicate that
the software is applicable only for noncleavable cross-linkers; blue
bars indicate that the software can be used for MS-cleavable cross-
linkers. (b) False discovery rates. (c) Mass tolerance MS. (d) Mass
tolerance MS/MS. For the Proteome Discoverer, data analysis was
performed using the XlinkX software node.
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Data Analysis and Validation Strategies. Strategies for
data analysis were highly diverse (Figure 5), reflecting the
variety in the XL-MS field where nearly every group possesses
their own software tools tailored to fit their specific needs. This
enormous variety is currently one of the most critical issues in
XL-MS, and we consider it as an important contribution of this
study to reflect this diversity. The false discovery rate (FDR)
plays an important role in this context, and from this study it
arose that most of the groups apply an FDR of 5% (Figure 5b).
Manual validation of the cross-links was performed for 66% of
the experiments, while in 34%, the data sets were not manually
checked. It is important to note that a mechanism to control
the FDR should exist in the software; although proper FDR
control is not trivial for small search spaces, manual validation
strategies might be especially beneficial in such cases. Some
strategies provide additional layers of evidence that can be used
to better control the error rate. For example, isotope-coded,
noncleavable linkers provide two independent measures of
precursor and fragment masses and charge state information
for fragments independent of MS resolution; MS-cleavable
linkers provide three layers of information: intact precursors,
released fragments corresponding to intact peptide chains, and
fragments thereof. In the absence of such strategies, we
recommend that preferentially both, MS and MS/MS data,
should be recorded with high mass accuracy to rule out a false
assignment of cross-linked products. Clearly, some of these
effects will only become apparent for samples of higher
complexity.
Identified Cross-Links. As we left it to the individual

participants whether to use in-solution or in-gel digestion as
the workup method before LC/MS/MS analysis, 47 data sets
were generated by in-solution digestion, while 10 samples
originated from in-gel digestion (Figure 1). As already
mentioned, BSA has a tendency to form dimers, which
somewhat complicates data analysis. In case only the BSA
monomer band is used for in-gel digestion and subsequent
generation of the cross-linking data set, one can definitely rule
out that cross-links are in fact representing intermolecular
interactions between two BSA molecules. On the other hand,
during the in-gel digestion procedure cross-links might get lost,
resulting in an overall lower number of cross-linked products.
Another aspect regards the reaction sites that were

considered during data analysis. Usually, NHS esters, such as
the mainly used cross-linkers BS3, DSS, DSBU, and DSSO, will
react with lysine, but they also exhibit a significant reactivity
toward serine, threonine, and tyrosine. The pH used for
conducting the cross-linking reaction plays a significant role as
amine reactivity is increased at higher pH values. Some
participants considered only Lys−Lys cross-links and neglected
the side-reactivity of NHS esters with hydroxy group-
containing amino acids. In this study, it became apparent
that Ser, Thr, and Tyr account for ∼30% of cross-linking sites
(Supporting Information, Figure S2). The reactivity of Ser,
Thr, and Tyr residues obviously depends on the reaction
conditions (cross-linker, pH value of the solution) as well as
local pKa value. It is not practicable to consider Lys, Ser, Thr,
and Tyr when analyzing very complex systems, such as
complete proteomes. Therefore, we suggest as a compromise
to consider for whole proteome samples only lysine as the
reactive sites of NHS ester cross-linkers, while for single
proteins or proteins assemblies, Lys, Ser, Thr, and Tyr might
be taken into account.

Figure 6 provides an overview about the reproducibility of
results obtained with the individual workflows of the
participants. For in-solution digestion workflows, the average
number of unique cross-links in BSA is 78, while for in-gel
digestion workflows using only the monomeric BSA band, the
average number is 44. The term “cross-link” refers to the
specific amino acid residues that are connected, irrespective of
different peptide sequences due to missed cleavage sites or
modifications. The majority of participating laboratories came
up with similar numbers of unique cross-links, independently
of the cross-linking conditions used (Figure 6a). Three cross-
linking workflows however recorded a significantly higher
number of cross-links (between 260 and 350). The reason
could be a false consideration of cross-links from BSA dimers
that in some preparations might have been a dominating
species due to inappropriate sample treatment. For in-gel
digestion workflows, up to 19 overlength cross-links were
reported in one data set, which could represent false-positives
due to partial unfolding as only the monomeric form of BSA
was considered in these samples (Figure 6b).
A more detailed inspection of the unique cross-links revealed

highly interesting insights: Data sets created from amine-
reactive cross-linkers (BS3, DSBU, DSS, DSSO, DC4, MC4,
CBDPS) using an in-solution digestion workflow yielded a
total of 1066 unique cross-links. A complete list of unique
cross-links, identified with cross-linkers reacting with nucleo-
philes (amine and hydroxy groups) and sorted by their
reproducibility, is provided as separate file in the Supporting
Information. In total, 601 of 1066 unique cross-links (56%)
were however identified in only one single data set (Figure 7).
This indicates an overall low reproducibility of cross-linking
results. The curve in Figure 7a shows that the number of
unique cross-links identified is inversely proportional to the
reproducibility of cross-links in the data sets (coefficient of
proportionality ≃ −1). If the reproducibility across the data
sets is higher than 20%, the effect of including more data sets,
different reaction conditions, and analytical parameters
determines a linear increment of the number of cross-link
identifications. The intercept with the y-axis of the resulting
interpolated linear curves indicates the putative number of
cross-links in BSA to be between 73 and 88 (Figure 7b). This

Figure 6. Number of BSA cross-links identified. The numbers of
cross-links are plotted for (a) in-solution and (b) in-gel digestion
workflows. The different cross-linkers are shown as symbols;
abbreviations of the cross-linkers are according to Figure 2. The
maximum distances are given for each cross-linker, indicating the
number of overlength cross-links. Every point is a sum of three
replicate measurements; replicates of the entire experiment are shown
in blue, and replicates of the LC/MS analyses are shown in red; the
average number and reproducibility of unique cross-links are shown in
yellow.
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value is very close to the average number of cross-links found
(78 cross-links per data set for in-solution digestion workflows,
Figure 6a). In Figure 7c, the dependence of the linear
correlation on the reproducibility of cross-links identified is
indicated. This indicates that a linear correlation only exists for
highly reproducible cross-links.
Cross-Links Identified from In-Gel Digested BSA

Monomer Band. We mapped cross-links in the monomer
band of BSA using in-gel digestion (in total 10 data sets) into
the published 3D structure of BSA (PDB entry 4F5S). For this,
a statistical analysis could be performed for homobifunctional,
amine-reactive linkers considered only for this type of cross-
linker. Only cross-links identified in at least two independent
experiments are presented (Figure S3). A total of 30 out of 230
cross-links exceeds the maximum length of 30 Å for the cross-
linkers employed in this study. These overlength cross-links
either originate from a false assignment or by applying
nonsuitable experimental conditions. Strikingly, 29 of these
overlength cross-links were identified in one single experiment
only. Cross-links that were identified in at least two
independent experiments show one overlength link, while
cross-links found in at least three independent experiments all
fall within the given distance limit of 30 Å (Figure S4). As
guideline for testing cross-linking workflows, we provide a list
of cross-links that were identified in at least two independent
experiments from in-gel digestion of the BSA monomer band
(Table S3, Supporting Information).
Monomer−Dimer Equilibrium of BSA. BSA exists in a

monomer−dimer equilibrium, which may give rise to
ambiguities in the identification of intra- and intermolecular
cross-links. To address this issue, we performed additional
experiments with four concentrations of BSA (10, 5, 1, and 0.5
μM). Strikingly, the number of overlength cross-links was very
low (only 1 or 2). Moreover, the numbers of overlength cross-
links were similar for all four BSA concentrations used (Table
S4, Supporting Information). This clearly indicates that a BSA

concentration of 10 μM, as chosen for this study, is suitable for
conducting cross-linking MS experiments.

Comparison of Data Acquisition and Analysis
Strategies from One Participating Laboratory. Because
most of the data in this study have been generated in different
laboratories, differences in instrumentation and in the software
used for data analysis make a direct comparison of selected
results difficult. However, we used a subset of the data
generated in a single laboratory to study the effect of the type
of mass spectrometer and of different search settings on the
outcome for a relatively simple model system, such as BSA (see
Supporting Information).

■ DISCUSSION
This first community-based cross-linking study reflects the
high diversity of XL-MS workflows that are currently employed
in different laboratories worldwide. However, it also became
apparent that independent of the workflow used, the results
obtained are to some degree comparable. For beginners in the
field, we suggest to use BSA as an initial study system and
compare the outcome to the results obtained herein. As a
guideline, the number of cross-links expected for BSA should
be ∼80 for an in-solution workflow, considering cross-links of
the monomer and the dimer. Not unexpectedly, our study did
not reveal the optimum experimental protocol or software to
be used in any and all projects. The applications of XL-MS are
just too diverse so that no single cross-linker, instrument, or
software tool is expected to be preferable for all scenarios,
ranging from single protein (as used in this work) to whole-cell
cross-linking. There are also clear interdependencies between
the type of cross-linker (cleavable, noncleavable) and the
software that can be applied to process such data as well as
between instrument type and software as not all fragmentation
methods or other MS platform-dependent features may be
supported.
As discussed above, XL-MS has become an essential part of

many structural proteomics studies but is also a key element in
integrative structural biology projects. In such interdisciplinary
work, XL data may only be a small “puzzle piece” that is
combined with other experimental data provided by methods
such as electron microscopy, X-ray crystallography, NMR
spectroscopy, small-angle X-ray scattering, together with
computational modeling. Details about how experiments
were carried out, how the data were processed, and how
error rates were assessed are often missing from the
publication, making it difficult for reviewers and readers to
assess the reliability and credibility of the results. We therefore
recommend that appropriate consideration should be given to
the method section of all XL-MS publications by providing all
necessary experimental and computational details. Our
reporting template could serve as a starting point for the
“minimum information about a cross-linking experiment” that
should be included in research articles containing XL-MS data.
This template is included in the Supporting Information for all
XL-MS data reports. Sufficient information needs to be
provided, irrespective of the relative contribution of the
cross-linking experiments to a specific project. This will also
facilitate the cross-referencing of XL-MS data in integrative
structural biology projects, for example, in the dedicated PDB
prototype archive, PDB-Dev.28

Data deposition to a proteomics repository, such as PRIDE,
is encouraged, as the paucity of available data sets do not assist
the field in validation, methods evaluation, and workflow

Figure 7. Comparison of unique cross-links. “Cross-link” denotes the
unique amino acid residues that are connected by homobifunctional,
amine-reactive cross-linkers. (a) Number of cross-links with respect to
their reproducibility among the data sets. (b) Linear extrapolation of
all (red) or a linear subset (blue) of cross-links resulted in a maximum
cross-linking number between 73 and 88. (c) Plot summarizes the
intercepts with the y-axis (red) and the correlation coefficient × 100
(blue) of the respective linear extrapolations of part a. The linear
extrapolation was calculated as shown in part b by successively
removing the data points starting from the lowest reproducible value.
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quality. It should be noted that not all data sets assigned to the
cross-linking category in PRIDE originate from genuine XL-
MS experiments (in the sense that cross-linking sites were
identified) but also contain data from experiments that used
cross-linking for the stabilization of complexes. The low uptake
of data deposition may in part be due to the specific nature of
XL-MS data. For a “complete” submission to ProteomeX-
change, allowing a complete integration of search results and
assignment of a Digital Object Identifier, the reported results
need to be compliant with a PSI format, such as mzIdentML.
Although the most recent version of mzIdentML (version 1.2)
includes support for some XL-MS strategies, such a
proteomics-centered format cannot easily consider all possible
workflows, and few dedicated cross-linking search engines offer
mzIdentML-compliant export at this point. Nevertheless, even
a “partial” submission will make the raw MS data and results
available in a user-specified format for download and reuse by
interested researchers.
Additional studies that cover a wider range of sample types,

such as large multiprotein assemblies or even whole
proteomes, will be required to obtain a better understanding
of the benefits and drawbacks of different experimental
workflows. However, we believe that this first community-
based study serves as the starting point for further initiatives in
this direction and encourages the adoption of consistent
reporting and data sharing guidelines in XL-MS. We would like
to invite interested parties to participate in the discussion to
expand the growing XL-MS community.

■ CONCLUSION AND GUIDELINES

Although XL-MS is becoming routine for in vitro and in vivo
applications in proteomics and structural biology, this
harmonization initiative unveiled a great variety in the cross-
links identified by participating groups, even for the single
protein BSA. This underlines the need for establishing
generally accepted XL-MS protocols as well as data analysis
and reporting formats. This interlaboratory study on XL-MS
represents the first effort of the community toward establishing
endorsed and transparent good practice guidelines for
performing and reporting XL-MS experiments. This study
also serves as test for all laboratories to evaluate the quality of
their XL-MS workflows and will aid in improving eventual
weaknesses. In summary, seven guidelines were deduced from
this study as framework for conducting XL-MS experiments as
detailed in Table 1.
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Table 1. Cross-Linking Mass Spectrometry Guidelines (Guidelines 1 and 2 Are Derived from the Results Shown in Figure 5)

no. topic description

1 FDR A mechanism to control the FDR should exist in the software used for cross-link identification. The FDR algorithm has to be described
in detail. For small search spaces, manual validation strategies might be beneficial.

2 mass accuracy MS and MS/MS data should be recorded and analyzed with high mass accuracy to reduce false assignments of cross-linked products, or
multiple lines of evidence from isotope labeling or cleavable linkers should be obtained.

3 experimental details Provide all experimental and computational details. The reporting template (Supporting Information) comprises the “minimum
information of a cross-linking experiment” that should be included in research articles containing XL-MS data.

4 data deposition Deposit raw MS files together with a description of their content and the reporting template to a proteomics repository, such as PRIDE.
5 visualization of

cross-linked
proteins

Perform SDS-PAGE analysis to evaluate the cross-linking performance under the employed experimental conditions. Check for possible
high-molecular weight aggregates.

6 cross-linker
selectivity

Consider only lysine and the N-terminus as reactive sites of amine-reactive cross-linkers for whole proteome samples. For single
proteins or large protein assemblies, consider lysine, N-terminus, serine, threonine, and tyrosine as reactive sites.

7 BSA cross-links Approximately 80 cross-links can be expected for cross-linking of BSA using homobifunctional amine-reactive cross-linkers and an in-
solution digestion workflow.
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