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Abstract

The fibroblast growth factor signaling pathway (FGFR signal-
ing) is an evolutionary conserved signaling cascade that regulates
several basic biologic processes, including tissue development,
angiogenesis, and tissue regeneration. Substantial evidence indi-
cates that aberrant FGFR signaling is involved in the pathogenesis
of cancer. Recent developments of deep sequencing technologies
have allowed the discovery of frequent molecular alterations in
components of FGFR signaling among several solid tumor types.
Moreover, compelling preclinical models have demonstrated the
oncogenic potential of these aberrations in driving tumor growth,
promoting angiogenesis, and conferring resistance mechanisms
to anticancer therapies. Recently, the field of FGFR targeting has
exponentially progressed thanks to the development of novel
agents inhibiting FGFs or FGFRs, which had manageable safety

profiles in early-phase trials. Promising treatment efficacy has
been observed in different types of malignancies, particularly in
tumors harboring aberrant FGFR signaling, thus offering novel
therapeutic opportunities in the era of precision medicine. The
most exciting challenges now focus on selecting patients who are
most likely to benefit from these agents, increasing the efficacy of
therapies with the development of novel potent compounds and
combination strategies, and overcoming toxicities associatedwith
FGFR inhibitors. After examination of the basic and translational
research studies that validated the oncogenic potential of aberrant
FGFR signaling, this review focuses on recent data from clinical
trials evaluating FGFR targeting therapies and discusses the chal-
lenges and perspectives for the development of these agents. Clin
Cancer Res; 21(12); 2684–94. �2015 AACR.
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Introduction
Fibroblast growth factors (FGF) and their receptors (FGFR)

regulate a wide range of physiologic cellular processes, such as

embryonic development, differentiation, proliferation, survival,
migration, and angiogenesis. FGFR signaling components are
frequently altered in human cancer, and several preclinical mod-
els have provided compelling evidence for the oncogenic poten-
tial of aberrant FGFR signaling in carcinogenesis, thereby validat-
ing FGFR signaling as an attractive target for cancer treatment.
Depending on the type of genomic aberration and the cellular
context, the oncogenic potential of dysregulated FGFR signaling
ranges from a driver event—responsible for oncogenesis and
oncogene addiction—to an escape mechanism of secondary
acquired resistance to other anticancer agents.

FGFR Signaling Pathway
FGFRs are transmembrane, receptor tyrosine kinases (RTK)

consisting of three extracellular immunoglobulin-like domains
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and one intracellular split tyrosine kinase domain (1, 2). In
contrast with the multiple fibroblast growth factor (FGF) genes
encoding 22 functionally distinct ligands, only four different
FGFRs (FGFR1–4) are known. However, alternative splicing
events of FGFR1–3 allow the generation of multiple isoforms,
presenting a dramatically variable FGF-binding specificity (3).

FGFs are secreted glycoproteins that are readily sequestered by
the extracellular matrix and the cell surface by heparan sulfate
proteoglycans (HPSG), which stabilize the FGF–FGFR interac-
tion by protecting FGFs from protease-mediated degradation.
The binding of an FGF to an FGFR leads to receptor dimerization
and transphosphorylation of tyrosine kinase domains (Fig. 1;
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Figure 1.
FGFR structure, network, and dysregulation in cancer. FGFRs are transmembrane RTKs consisting of three extracellular immunoglobulin-like domains and one
intracellular split tyrosine kinase domain. A complex is formed among FGF, HSPG, and FGFR leading to receptor dimerization, and transphosphorylation
of tyrosine kinase domains. Activation of downstream signaling occurs via FRS2, which functions as a key adaptor protein associated with GRB2, resulting in
subsequent activation of MAPK and PI3K/AKT signaling pathways. Operating independently from FRS2, phospholipase C-g (PLC-g) binds to a phosphotyrosine at
the COOH tail and hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-tri-phosphate (IP3) and diacylglycerol (DAG), thus
activating protein kinase C (PKC), which convergeswith the MAPK pathway. Depending on the cellular context, several other pathwaysmay be activated by FGFRs,
including the p38 MAPK and Jun N-terminal kinase pathways, STAT signaling, and ribosomal protein S6 kinase 2 (RSK2). Multiple negative regulators may
attenuate signaling at different levels, including FGFRL1, SEF, SPRY, and MAPK phosphatase 1 and 3 (MKP1 and MKP3). Aberrant FGFR signaling may result
from (i) increased availability of FGFs (secreted by tumor or stromal cells) leading to ligand-dependent FGFR signaling (autocrine/paracrine loops), or
(ii) ligand-independent FGFR signaling when a molecular alteration of an FGFR (mutation, translocation, or amplification) induces a constitutive activation
of the kinase domain.
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refs. 4, 5). Activation of downstream signaling occurs via the
intracellular receptor substrates FGFR substrate 2 (FRS2) and
phospholipase Cg (PLC-g), leading to subsequent upregulation
of RAS/mitogen-activated protein kinase (MAPK) and phosphoi-
nositide 3-kinase (PI3K)/AKT signaling pathways. Other path-
ways can be activated, including STAT-dependent signaling
(Fig. 1; refs. 1–5).

Dysregulation of FGFR Signaling in Human
Malignancies

Aberrant FGFR signaling contributes to carcinogenesis in three
main situations: (i) "driver mutations," where the acquisition of
somatic molecular alterations directly stimulates cancer cell pro-
liferation and survival; (ii) neoangiogenesis; and (iii) resistance to
anticancer agents (1–5).

Molecular alterations of the FGFR signaling pathway as driver
events: the oncogene addiction phenomenon
FGFR family fusion genes. Fusion genes are hybrid genes formedby
the rearrangement of two previously independent genes. They can
occur as a result of translocation, chromosomal inversion, dupli-
cation, or deletion. Several fusion proteins are known to play
crucial roles in the initiation and progression of cancer, thereby
representing ideal targets for rational drug design strategies.
Examples of success include targeting BCR–ABL1 with imatinib
(6) in chronic myeloid leukemia, PML–RARA with tretinoin in
acute promyelocytic leukemia (7), or the EML4–ALK with crizo-
tinib in lung adenocarcinoma (8).

Many recent efforts of molecular screening programs and
precision medicine have allowed the identification of multiple
fusion genes between FGFR1, -2, and -3 and multiple partners
(including TACC1, TACC3, BAIAP2L1, BICC1, and AHCYL1) in
several malignancies such as glioblastoma, urothelial bladder
carcinoma, non–small cell lung cancer (NSCLC), and cholangio-
carcinoma (Table 1; refs. 9–15). Although a substantial effort
remains to be achieved to delineate real drivers from passenger
fusions, there is robust preclinical and clinical evidence support-
ing the oncogenic potential of these rare alterations. The under-
lying mechanisms, which vary according to the specific cellular
context, include (i) ligand-independent activation of the FGFR
kinase domain, resulting in constitutive activation of downstream
MAPK signaling (9, 14, 15); (ii) mislocalization of the fusion
protein to mitotic spindle poles resulting in increased chromo-
somal instability (9); and (iii) loss of genomic regulatory ele-
ments or fusion to a gene with a strong promoter resulting in
overexpression of the fusion protein (10, 15).

Fusions involving FGFR3 and TACC3 (transforming acidic
coiled-coil containing protein 3) are found in 3% to 7% of
glioblastomas (9–11), 3% to6%of urothelial bladder carcinomas
(14–16), and other tumor types at lower frequencies (12–15). In
mouse xenograft models, the induction of FGFR3--TACC3 expres-
sion in human astrocytes resulted in the development of glioma-
like tumors (9). In vivo, both FGFR3–TACC3–initiated bladder
carcinoma (15) and glioblastoma (9) were extremely sensitive to
specific FGFR inhibitors, suggesting oncogenic addiction to the
fusion protein.

In intrahepatic cholangiocarcinoma, FGFR2 fusions with
either AHCYL1 or BICC1 have been described in 13.6% of
cases and are mutually exclusive with KRAS/BRAF muta-
tions (17). In vivo models demonstrated the transforming

potential of these alterations, and high sensitivity to FGFR
inhibitors (17).

These preclinical data provide a strong rationale for enrolling
patients with tumors harboring FGFR fusions in clinical trials
evaluating FGFR inhibitors, and preliminary data from early-
phase trials are very encouraging (18).

FGFR-activating mutations. The screening of more than 1,000
exonmutations of protein kinase genes from 210 different malig-
nancies (19) identified the FGFR signaling pathway as the most
commonlymutated tyrosine kinase signaling pathway. Activating
mutations in FGFRs may result in aberrant FGFR signaling
through multiple mechanisms, including the following: (i)
enhanced activation of the kinase domain; (ii) ligand-indepen-
dent dimerization of the receptors; and (iii) altered affinity for
FGF ligands.

Urothelial bladder carcinoma has the most established associ-
ation with altered FGFR signaling, with up to 80% of low-grade
tumors harboring FGFR mutations and compelling in vivo and in
vitro data (Table 1). Comprehensive molecular characterization of
this cancer (16) revealed a cluster of tumors with papillary mor-
phology characterized by a high rate of molecular alterations of
FGFR3 (mutations, copy number gain, fusions), which may have
some degree of FGFR addiction (Table 1; refs. 20–28). The most
common activating mutations affect either the extracellular
(R248C, S249C) or the transmembrane (G370C, S371C, Y373C,
G380R, A391E) domains of the protein. Kinase domainmutations
(N540S, K650E, K650M, K650N, K650Q, and K650T) are rarer.

FGFR2 mutations have been found in 12% to 14% of endo-
metrial cancer (29–31) and mainly consist of missense acti-
vating mutations of the extracellular domain (S252W, P253R).
In vitro and in vivomodels demonstrated the selective sensitivity
of FGFR2-mutant endometrial cancer to FGFR inhibitors
(29, 31–34).

Activating mutations of FGFR4 (affecting the kinase domain)
are found in 6% to 8% of patients with rhabdomyosarcoma
(35, 36). In a comprehensive genomic analysis of 147 cases
of rhabdomyosarcoma, FGFR signaling was themost significantly
altered pathway in both fusion-positive and fusion-negative
rhabdomyosarcomas. Cell lines and explants harboring FGFR4-
activating mutations were both sensitive to FGFR inhibitors
(36, 37).

FGFRoverexpression.Overexpression of FGFRsmay lead to ligand-
independent FGFR signaling and is mainly caused by focal
amplifications.

FGFR1 amplification has been found in approximately 7%
to 20% of squamous non–small cell lung carcinoma
(NSCLC; refs. 38, 39), 18% of osteosarcoma, and 6% of small-
cell lung carcinoma (40), and is associated with sensitivity to
FGFR inhibitors in preclinical in vivo models (refs. 38, 41, 42;
Table 1). In breast cancer, amplification of FGFR1- and/or 11q12-
14 (which contains CCND1, FGF3, FGF4, and FGF19) have
been observed in 23% of hormone receptor-positive (HRþ),
27% of HER2-amplified, and 7% of triple-negative cases and is
predictive for early relapses and poor outcome (43–47). Many
FGFR1-amplified breast cancer cell lines are addicted to FGFR1
amplification (45, 48, 49), and FGFR1 amplification also drives
resistance to endocrine therapy (48).

FGFR2 amplification (4% of triple-negative breast cancer, 4%–

9% of gastric cancers) is associated with the maintenance of
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tumor-initiating cells (50), poorer prognosis (51, 52), and high
sensitivity to FGFR inhibitors (49, 50, 53).

Aberrant autocrine/paracrine loops. In addition to FGFRmolecular
alterations, multiple autocrine and paracrine loops involving
FGFRs and FGFs ligands have been described in several cancer
models (including NSCLC, hepatocellular carcinoma, breast,
prostate, and colorectal cancers). Aberrant loops result from
increased release of FGFs by tumor or stromal cells, promoting
proliferation, survival, and angiogenesis. Interestingly, several
studies have associated these aberrant loops with antitumor
activity of either tyrosine kinase inhibitors (TKI) or antibodies

directed against FGFR ligands (54–56). However, available data
emerge mainly from preclinical work on cell line models, and
further clinical confirmation is required.

The FGFR signaling pathway promotes tumor angiogenesis
Angiogenesis plays a pivotal role during tumor growth and

tissue invasion. FGFs—and especially FGF2—are among the
earliest identified proangiogenic factors, and they have a direct
effect on tumor angiogenesis at all steps of angiogenesis
(5, 57, 58). Endothelial cells express FGFR1 more often than
FGFR2, while the expression of FGFR3 or FGFR4 has not been
reported (5). The activation of FGFR1 and/or FGFR2 signaling in

Table 1. Common genetic alterations in FGFRs related to cancer and evidence for oncogenic potential of altered FGFRs

Molecular
alteration

Tumor (prevalence,
if known; refs.)

Consequences in preclinical models
(tumor model; refs.)

Evidence of antitumor activity
in clinical trials (refs.)

FGFR1 translocation Glioblastoma (na; ref. 9)
Breast cancer (na; ref. 15)
Lung squamous cell carcinoma
(na; ref. 15)

8p11 myeloproliferative
syndrome (na; ref. 1)

Transforming potential, confer sensitivity to
FGFR inhibitors (glioblastoma in vivo
models; ref. 9)

na

FGFR1 mutation Pilocytic astrocytoma (5%–8%;
ref. 83)

Gastric cancer (4%)

Transforming potential (pilocytic
astrocytoma; ref. 83)

na

FGFR1 amplification Small cell lung carcinoma (6%;
ref. 40)

Osteosarcoma (17%; refs. 3, 4)
Breast cancer (10%–15%;
refs. 43–47)

Ovarian cancer (5%; refs. 3, 4)
Squamous cell carcinomas:
- Lung (7%–15%; refs. 38, 39)
- Head and neck (10%–17%;
ref. 3)

- Esophageal (9%; ref. 3)

Transforming potential in several in vivo
models, confer sensitivity to FGFR
inhibitors (refs. 38, 42, 44, 48, 53)

Drives resistance to endocrine therapy (HRþ

breast cancer), and to gefitinib (EGFR-
mutant lung adenocarcinoma;
refs. 38, 48, 63)

PRs mainly in patients with lung squamous
cell carcinomas; little evidence supporting
oncogene addiction in esophageal and
breast cancers (refs. 41, 66, 71, 74)

FGFR2 translocation Intrahepatic
cholangiocarcinoma (14%;
refs. 15, 17)

Prostate cancer (na; ref. 15)
Breast cancer (na; ref. 15)

Transforming potential, sensitivity to FGFR
inhibitors (cholangiocarcinoma; refs. 15, 17)

PR in a patient with cholangiocarcinoma
(ref. 74)

FGFR2 mutation Endometrial cancer (12%–14%;
refs. 30, 31)

Squamous non–small cell lung
carcinoma (5%; ref. 4)

Confer sensitivity to FGFR inhibitors
(endometrial; refs. 29, 31–34)

na

FGFR2 amplification Gastric cancer (5%–10%;
refs. 51, 52)

Breast cancer (4%; ref. 50)

Confer sensitivity to FGFR inhibitors;
refs. 50–52)

na

FGFR3 translocation Bladder carcinoma (3%–6%;
refs. 14–16)

Glioblastoma (3%; refs. 9–11)
Myeloma (15%–20%; ref. 4)
Lung adenocarcinoma (0, 5%;
ref. 13)

Squamous cell carcinomas:
- Lung (3%; refs. 12, 13)
- Head and neck (na; ref. 15)

Transforming potential, confer sensitivity to
FGFR inhibitors (bladder carcinoma,
glioblastoma; refs. 9–11, 14, 15)

PRs in patients with bladder cancer; clinical
benefit with stabilization in patients with
recurrent glioblastoma (refs. 11, 18)

FGFR3 mutation Bladder carcinomas (60%–80%
in non–muscle-invasive,
15–20% in muscle-invasive;
refs. 16, 20–22, 24, 25)

Cervical cancer (5%; ref. 4)

Transforming potential, confer sensitivity to
FGFR inhibitors (refs. 21, 26–28)

PRs in patients with bladder cancer (ref. 74)

FGFR3 amplification Bladder carcinoma (na; ref. 4)
Salivary adenoid cystic cancer
(na; ref. 4)

na na

FGFR4 mutation Rhabdomyosarcoma (6%–8%;
refs. 35, 36)

Transforming potential, confer sensitivity to
FGFR inhibitors (refs. 36, 37)

Abbreviations: na, not available; PR, partial response.
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tumor cells may also play a critical role in the development and
maintenance of the tumor vasculature, as suggested by preclinical
models of triple-negative breast cancer and mouse glioma (59).

In addition to its direct proangiogenic effects, FGFR signaling
indirectly activates the VEGFR signaling pathway and synergizes
with VEGFR and platelet-derived growth factor receptor (PDGFR)
pathways to promote tumor neoangiogenesis (5, 60). The com-
plementary and overlapping functions of the FGFR and VEGF
pathways in angiogenesis have suggested that FGFR signaling
dysregulationmaymediate resistance to anti-VEGF therapy. Inter-
estingly, increased FGF2 levels have been reported in patients
with various tumor types who exhibited disease progression
while receiving VEGF-targeted therapies (61), and results from
preclinical studies have suggested that targeting FGFR could
be one effective strategy to restore sensitivity to antiangiogenic
agents in patients progressing on anti-VEGF therapy (62).

The FGFR signaling pathway mediates resistance to anticancer
therapy

Significant cross-talk between FGFR signaling and other onco-
genic pathways may explain the role of FGFR signaling in the
development of acquired resistance to anticancer therapies. For
example, the activation of an FGF2–FGFR1 autocrine pathway has
recently been proposed as a mechanism of acquired resistance to
EGFR-specific TKIs inNSCLC–adenocarcinoma EGFR-mutant cell
lines (63). Other studies have proposed FGFR3 activation as a

mechanismof acquired resistance to cetuximab inKRASwild-type
squamous cell carcinoma (skin) and to vemurafenib in BRAF
(V600E)-mutant melanoma cells (64, 65).

Also, FGFR1 amplification may drive the proliferation of lumi-
nal B type breast cancer and promote resistance to hydroxytamox-
ifen, as the suppression of FGFR1 signaling by RNAi reverses this
resistance (48). This possibility is currently being evaluated in
clinical trials combining FGFR inhibitors (AZD4547) and endo-
crine therapy in estrogen receptor–positive (ERþ) breast cancer
(NCT01202591).

Overall, compelling evidence demonstrates the oncogenic
role of aberrant FGFR signaling in several human malignancies.
FGFR-targeted agents may therefore be used to counteract
tumor growth, to target angiogenesis, and to reverse or prevent
acquired resistance to anticancer drugs. Data from clinical trials
of FGFR-targeted therapies and challenges to be faced in the
development of such treatments are discussed below.

Clinical Trials Evaluating FGFR-Targeted
Agents

Recently, the field of FGFR targeting has exponentially
progressed, thanks to the development of novel agents inhibit-
ing FGFs or FGFRs, including (i) nonselective and selective
TKIs; (ii) monoclonal antibodies; and (iii) FGF ligand traps
(Fig. 2).
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Small-molecule TKIs targeting FGFRs
TKIs are small molecules that directly inhibit receptor kinase

activity by interfering with the binding of ATP or substrates of the
tyrosine kinase domain. For historical reasons, themost clinically
advanced compounds arenonselective TKIs (includingponatinib,
brivanib, nintedanib, lenvatinib, dovitinib, and lucitanib) that
have dominant activity against other RTKs (mainly VEGFRs and
PDGFRs, but also FLT3, RET, KIT, and BCR–ABL), and also exert
activity against FGFRs due to structural similarity of their kinase
domains. Because of the simultaneous targeting of VEGFR,
PDGFR, and FGFR signaling pathways, these compounds are
being developed mainly as antiangiogenic agents. Although
simultaneous inhibition ofmultiple RTKsmay increase treatment
efficacy by concomitant disturbance of redundant pathways,
increased side effects also arise, and lack of bioactivity against
FGFRs may limit their efficacy in tumors with aberrant FGFR
signaling. This has justified the development of selective and
highly potent FGFR TKIs (including JNJ-42756493, AZD4547,
BGJ398, and TAS-120) with IC50 values below the nanomolar
range for FGFRs (Fig. 2). Recent data from selected clinical trials
evaluating FGFR TKIs are discussed below.

Nonselective FGFR TKIs. Lucitanib (E3810, Clovis Oncology)
inhibits mainly VEGFR1-3, PDGFR-a/b, and FGFR1 (66, 67). In
the phase I/II trial, 50% of patients with breast cancers harboring
FGFR1 and/or FGF3/4/19 amplifications, or with tumors antici-
pated, who were expected to benefit from antiangiogenic agents,
achieved partial response (PR, RECIST 1.1; ref. 66). This impres-
sive efficacy was observed at all doses tested, with durable PRs in
several tumor types (10/58 evaluable patients still in response
after 1 year of treatment). The main dose-limiting toxicity (DLT)
was glomerular thrombotic microangiopathy. Phase II trials are
ongoing in HRþ metastatic breast cancer (NCT02053636) and in
FGFR1-amplified squamous-NSCLC (NCT02109016).

Dovitinib (TKI258, Novartis) exhibits biochemical IC50 values
that are below 20 nmol/L for VEGFR1–3, PDGFR-b, FGFR1 and
-3, FLT-3, KIT, RET, TrkA, and CSF-1 (49). After observation of
antitumor activity in the phase I study patients with renal cell
carcinoma (RCC; ref. 68), the phase II study demonstrated a
progression-free survival (PFS) duration of 5.5 months and an
overall survival (OS) duration of 11.8 months in patients with
RCC (69). Sorafenib was selected as comparator in the phase III
trial given the similar target profile between the two drugs. This
study randomized 570 patients in the third-line setting (70).
Although the study's results were negative, not showing an
improvement in PFS with dovitinib over sorafenib, important
data were generated. This trial established for the first time the
activity of TKIs in the third-line setting in patients with RCC, and
provided benchmark values for PFS (nearly 4months) andOS (11
months). In a phase II trial, dovitinib showed antitumor activity
in heavily pretreated breast cancer patients, but failed to reach its
primary endpoint of improved overall response rate in the geno-
mically selected arm (FGFR1-amplified tumors; ref. 49).

Ponatinib (AP24534, ARIADPharmaceuticals) is amultikinase
inhibitor of BCR–ABL, LYN, FGFR1–2, VEGFR2, PDGFR-a, and
KIT. In the phase II trial of ponatinib, 66% of patients with
refractory chronic myeloid leukemia (CML) and Philadelphia-
positive (Phþ) acute lymphoblastic leukemia (ALL) showed a
major cytogenetic response. Ponatinib was appoved by the FDA
for patients with resistant or intolerant CML and Phþ ALL based
on results of the PACE phase II trial (3, 4).

Other nonselective TKIs, such as nindetanib (BIBF1120, Boeh-
ringer-Ingelheim), brivanib (BMS582664, Bristol-Myers Squibb),
lenvatinib (E7080, Eisai), and orantinib (TSU-68, Taiho Pharma-
ceutical) exert anti-FGFR activity but mainly target other kinases
(refs. 1–4; Fig. 2).

Selective FGFR TKIs. JNJ-42756493 (Johnson & Johnson) is a
potent oral pan-FGFR inhibitor with IC50 values in the low
nanomolar range for FGFR1, -2, -3, and -4. Preliminary results
from the ongoing phase I trial are available. Clinical benefit was
documented in patients with tumors harboring FGFR3–TACC3
fusions (long-lasting PR in 1 bladder urothelial carcinoma and
stabilization in 2 recurrent glioblastoma; refs. 11, 18), and 1 near
complete response was observed in a patient with a urothelial
cancer of the renal pelvis harboring FGFR2 truncation. Four
patients with FGFR1 amplification achieved stable disease [SD;
lung cancer (n ¼ 2), chondrosarcoma (n ¼ 1), and breast cancer
(n ¼ 1)]. The most common (�20% of patients) adverse events
(AE) were hyperphosphatemia (60%), asthenia (46%), dry
mouth (30%), constipation (27%), abdominal pain, stomatitis,
and vomiting (22% each). Toxicity was grade� 2 in all cases. Ten
(27%) patients had grade� 3 toxicities, and 1 grade 3 DLT (AST/
ALT elevation) was documented at the 12-mg dose (18). Expan-
sion stage of the study is ongoing.

AZD4547 (AstraZeneca) is a highly potent and selective
FGFR1–3 inhibitor. During the phase I trial, minimal activity
was observed in 5 of 20 patients with tumors harboring FGFR
signaling aberrations. Efficacy was higher in patients with a high
level of FGFR amplification (ratio FGFR:Centromeric probe
� 3.0; refs. 71–73). Two randomized phase II trials will evaluate
the safety and efficacy of AZD4547 in patients with FGFR1-ampli-
fied gastric/esophagogastric cancers (NCT01457846) and in
FGFR1-amplified ERþ breast cancer (NCT01202591).

BGJ398 (Novartis) is a selective inhibitor of FGFR1–3 (41, 74).
Preliminary results (in 94 patients) of the ongoing phase I trial
documented clinical benefit in 8 patients with tumors harboring
FGFR signaling alterations (4 patients with FGFR1-amplified
squamous-NSCLC achieved PRs, and 4 of 5 patients with
FGFR3-mutant bladder carcinoma had tumor reductions), 4 of
which lasted for more than 16 weeks. In addition, tumor reduc-
tions were observed in patients with cholangiocarcinoma with
FGFR2 fusion and FGFR1-amplified breast cancer (41, 74). AEs
were generally mild (grade � 2) and included dose-dependent
hyperphosphatemia, diarrhea, fatigue, and nausea.

LY287445, and Debio 1347 are other selective FGFR TKIs that
are currently being evaluated in phase I trials (3, 4). TAS-120 is a
second-generation highly potent irreversible inhibitor selective
of all FGFRs (75) currently being evaluated in a phase I trial.

Monoclonal antibodies and FGF ligand traps
Monoclonal antibodies (mAb) targeting FGFs or FGFRs can

block FGFR signaling by interfering with ligand binding or recep-
tor dimerization. mAbs target specifically particular FGF or FGFR
isoforms due to the high specificity of antigen–mAb interactions,
which might limit the AEs associated with the inhibition of
FGFR signaling.

MFGR1877S (Genentech) is a human anti-FGFR3 mAb that
showed antitumor activity in preclinical models of bladder cancer
with FGFR3 overexpression. Two phase I studies of MFGR1877S
in patients with advanced solid tumors or myeloma have
been completed. A preliminary report on the solid tumor study
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documented long-lasting stabilization in 4 of 10 patients with
bladder cancer. The DLT was thrombocytopenia in 1 patient, and
a recommended phase II dose was determined (76). Further
clinical development of MFGR1877S or other mAbs targeting
FGFR signaling is unknown at this time.

FGF ligand traps sequester FGF ligands, blocking their abi-
lity to bind to and activate FGFRs. FP-1039 (GSK3052230,
GlaxoSmithKline) is a soluble fusion protein consisting of the
extracellular domain of FGFR1c fused to the Fc region of IgG1
that prevents binding of FGF1, FGF2, and FGF4 (77). A phase II
trial in patients with endometrial cancers harboring specific
FGFR2 mutations was withdrawn because of unfeasibility (after
screening of 70 patients, none qualified; NCT01244438). A phase
I trial is currently evaluating FP-1039 in association with chemo-
therapy in patients with lung cancer (NCT01868022).

DevelopmentofFGFR-TargetedTherapies:
Current State of the Art and Challenges
Lessons learned from the clinical development of FGFR
inhibitors

Preliminary data from early-phase trials evaluating FGFR inhi-
bitors have provided substantial information. First, proof-of-
concept of an effective inhibition of FGFR signaling by TKIs in
patients with cancer has been achieved, and increased serum
FGF23, phosphate, and vitamin D levels have been identified as
potential pharmacodynamic markers associated with on-target
effect (18, 71, 74). Second, the safety and feasibility of FGFR
targeting have been demonstrated, with several phase I/II trials
reporting manageable toxicities.

Third, evidence of oncogene addiction has been reported
with highly specific inhibitors in patients with lung cancer and
bladder carcinoma presenting FGFR alterations (18, 71, 74).
Clinical benefit and tumor reduction were also reported in
patients with glioblastoma and cholangiocarcinoma harboring
FGFR translocations, and ongoing trials may help to validate
the relevance of these targets. Nevertheless, only a small subset
of patients presented objective response and the key challenge
will be to identify biomarkers of primary resistance to better
select patients who should be included in further phase III
trials. One possible biomarker could be the level of amplifi-
cation (71, 74). In breast cancer, there is little evidence sup-
porting oncogene addiction in patients treated with AZD4547
and BGJ398, suggesting that targeting the FGFR1 amplification
itself is not enough to generate antitumor effects. Interesting-
ly, when multikinase TKIs (targeting FGFRs, VEGFRs, and
PDGFRs) were evaluated (lucitanib, and to a lesser extend
dovitinib; refs. 49, 66), phase I/II trials reported convincing
evidence of antitumor activity. This suggests a synergism
between FGFR and VEGFR/PDGFR targeting (58–60). The
mechanisms of this synergism are yet to be defined. In gastric
cancers, there is no evidence that targeting FGFR2 amplification
will lead to antitumor effects.

Overall, the results obtained with FGFR inhibitors differ sub-
stantially fromone tumor to another and from one drug family to
another. This suggests that inhibitors in development may not
have equivalent efficiency, and that FGFR alterations could have
different biologic meanings according to tumor types. In a subset
of lung cancer, bladder carcinoma, glioblastoma, and cholangio-
carcinoma this alteration could be involved in cancer progression.
In breast cancers, the FGFR1 amplification could be involved in

resistance to endocrine therapy and could confer some sensi-
tivity to multikinase inhibitors. In gastric cancers, the evidence
that FGFR2 amplifications are drivers is lacking.

The main challenges will now be (i) the recognition of patients
most likely to benefit from FGFR inhibitor; (ii) the choice of the
most clinically relevant compound for registration, taking into
account the selectivity of the agents, their potency at durably
inhibiting specific FGFR alterations, and their toxicity profiles;
and (iii) the design and implementation of rational combination
strategies (Fig. 3). Results fromongoing phase I/II trials evaluating
highly potent inhibitors will certainly clarify some of these unre-
solved questions. At this stage it is unclear whether some FGFR
TKIs will reach the level of efficacy of imatinib in KIT-mutant
gastrointestinal stromal tumors or the efficacy of EGFR–TKIs in
EGFR-addicted NSCLC. Additional clinical data in appropriately
selected patients and long-term findings will help in determining
the best strategy to efficiently target FGFR signaling.

Identifying patients with tumors addicted to FGFR signaling
and conducting clinical trials in patients presenting with low-
frequency molecular alterations

FGFR signaling–related molecular alterations are found at
relatively low frequencies in most tumors (Table 1), and molec-
ular screening is therefore a crucial challenge for the develop-
ment of FGFR inhibitors as patient selection is key in this context
(Fig. 3). We can applaud that most phase I/II trials have
endeavored to enroll patients harboring specific FGFR altera-
tions, as this has allowed the identification of several hurdles for
patient selection, which will hopefully expedite the develop-
ment of these agents in later-phase trials. There is urgent need for
validating clinically useful companion diagnostics, allowing
detection of patients most likely to benefit (or not) from
FGFR-targeted therapies, and/or enabling monitoring and opti-
mization of response to treatment (78). The main challenges
have included (i) determining optimal diagnostic procedures for
FGFR molecular alterations, and standardizing the definition of
FGFRs amplification; (ii) detecting rare-frequency fusion genes
involving various partners; (iii) discriminating between passen-
ger and driver alterations; and (iv) integrating the available
information within a specific cellular and tumor heterogeneity
context. In the context of low-frequency molecular aberrations,
we will prioritize multiplex genetic testing that allows parallel
screening of components of FGFR signaling, and other frequent-
ly altered pathways. This practice will certainly make it possible
to increase the potential for detecting any targetable alterations
in known cancer driver genes.

Identifying mechanisms of primary and acquired resistance to
FGFR-targeted therapies and implementing combination
strategies

Failure of FGFR TKIs may result from non–TKI-sensitizing
genetic alterations, lack of efficacy of TKIs, altered drug influx/
efflux, and emergence of subclonal resistant populations. Some
preclinical studies have uncovered potential mechanisms of
intrinsic or acquired resistance to FGFR inhibitors, including the
following: (i) mutations in the tyrosine kinase domain (FGFR2
N550K) that decrease the affinity of dovitinib to its binding
domain (29); (ii)mutations of the ATP binding cleft ("gatekeeper
residue"; FGFR3 V555M; refs. 29, 79); and (iii) activation of the
ERBB family members resulting in a switch from dependency
from FGFR signaling to ERBB signaling, which can be overcome
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with a combination of FGFR and EGFR inhibitors (28, 80). The
variability of resistance mechanisms added to a context of tumor
heterogeneity justifies consideration of biopsy in secondary
resistant tumors to individualize subsequent treatment, as well
as discovery of novel resistance mechanisms.

Combination strategies have been proposed to prevent or delay
the emergence of resistance. For example, the combination of
ponatinib and ridaforolimus in an endometrial xenograft model
with an FGFR2-activating mutation resulted in superior efficacy
and tumor regression (4). Also, in vivo models of breast cancer
demonstrated that concomitant administration of dovitinib with
either a PI3K/mTOR inhibitor or a pan-ERBB2 inhibitor resulted
in strong inhibition of tumor growth and blocked metastatic
spread (81). Finally, two recent preclinical studies showed that
FGFR inhibition was synergistic with MET inhibition in xeno-
graft models, and that FGFR inhibition could restore sensitivity to
MET inhibition in tumor cells that acquired resistance to MET
inhibitors (4).

Taking into account the currently available preclinical/clinical
data, the most promising synergistic combination with mini-
mally overlapping toxicities will associate FGFR inhibitors
with (i) EGFR inhibitors (or inhibitors targeting other RTKs or
downstream MAPK and PI3K/AKT signaling), (ii) endocrine
therapy (ongoing trial NCT01202591 evaluating AZD4547 in
combination with endocrine therapy in ERþ breast cancer),
(iii) anti-VEGF (this is achieved by multikinase inhibitors), or
(iv) immunotherapeutics (82).

Managing toxicities of FGFR inhibition
Given the multiple physiologic functions of FGFR signaling,

the feasibility of long-term FGFR signaling inhibition is ques-
tionable. Although nonselective FGFR inhibitors have toxicity
profiles close to those for VEGFR TKIs, selective FGFR TKIs
display their own class-specific toxicity related to a potent and
specific FGFR signaling inhibition (Fig. 4). The main specific
drug-related AEs observed to date are all mild and manageable,
and include hyperphosphatemia, nail and mucosal disorder,
fatigue, and reversible retinal pigmented epithelial detachment.
In cases of long-term inhibition of FGFR signaling, these class-
specific AEs may induce a clinically relevant deterioration in
quality of life, and should therefore be prevented and optimally
managed to avoid dose reductions.

Conclusions
Activation of the FGFR signaling pathway represents one of the

founding events in carcinogenesis. Recent efforts in cancer
research have enabled us to identify multiple oncogenic molec-
ular alterations involving the FGFR signaling pathway across
severalmalignancies.Given the established roles of aberrant FGFR
signaling in oncogenesis, FGFR-targeted agents may be used to
stunt tumor growth, to target angiogenesis, and to reverse
acquired resistance to anticancer agents. Preliminary results from
early development trials of FGFR inhibitors are very promising,
with manageable toxicities and significant antitumor activity
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observed in molecularly selected populations, including patients
with lung cancer, breast cancer, bladder carcinoma, glioblastoma,
and cholangiocarcinoma, providing evidence of oncogene addic-
tion. Efforts are needed to recognize patients most likely to
benefit from FGFR inhibitors, to validate clinically useful com-
panion diagnostics, to implement combination strategies, to
overcome chronic toxicities, and to determine the most clinically
relevant compound for registration. Considering the low frequen-
cies of specific FGFR molecular alterations in each cancer type,

well-designed phase II trials with strong efficacy results could lead
to approval for clinical use.
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