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PDE4 inhibitors: current status
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Phosphodiesterase4 inhibitors are currently under development for the treatment of respiratory diseases including asthma and
chronic obstructive pulmonary disease. The rationale for the development of this drug class stems from our understanding of
the role of PDE4 in suppressing the function of a range of inflammatory and resident cells thought to contribute toward the
pathogenesis of these diseases. Similarly, numerous preclinical in vivo studies have shown that PDE4 inhibitors suppress
characteristic features of these diseases, namely, cell recruitment, activation of inflammatory cells and physiological changes in
lung function in response to a range of insults to the airways. These potentially beneficial actions of PDE4 inhibitors have been
successfully translated in phase II and III clinical trials with roflumilast and cilomilast. However, dose limiting side effects of
nausea, diarrhoea and headache have tempered the enthusiasm of this drug class for the treatment of these respiratory
diseases. A number of strategies are currently being pursued in attempts to improve clinical efficacy and reduce side effects,
including delivery via the inhaled route, and/or development of non-emetic PDE4 inhibitors and mixed PDE inhibitors.
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Introduction

Theophylline has been used in the treatment of asthma and

chronic obstructive pulmonary disease (COPD) since the

1930s although its popularity has declined due to the

introduction of long acting b2-adrenoceptor agonists and

glucocorticosteroids, either alone or in combination. Theo-

phylline is often used with glucocorticosteroids as second- or

third-line therapy where it has proven anti-asthmatic

activity in asthma (Sullivan et al., 1994; Weinberger and

Hendeles, 1996; Lim et al., 2000) and in combination with

long acting bronchodilator drugs in COPD (Rennard, 2004).

As an p.o formulation, this drug offers the advantage of

improved compliance; however, its perceived lack of efficacy,

the necessity to monitor plasma levels, coupled with

numerous side effects, known drug interactions, and the

effect of smoking on plasma clearance (Boswell-Smith et al.,

2006a) have provided an impetus to discover a better

theophylline. Moreover, whereas glucocorticosteroids are of

clinical utility in asthma (Barnes, 2006a), they are of limited

use in COPD (Rennard, 2004). There is clearly an unmet

clinical need for the development of disease-modifying drugs

in COPD because other than cigarette smoke cessation,

current drug therapy does not prevent the accelerated

decline in lung function.

The mechanism of action of theophylline, which explains

its clinical effect is not entirely certain, but several have been

proposed. It was originally shown that theophylline inhib-

ited the activity of a cyclic 30, 50 nucleotide PDE with a Ki of

100 mM (Butcher and Sutherland, 1962). This might account

for its beneficial effects clinically, as an increase in the

intracellular levels of cyclic AMP can reduce the activation of

a wide range of inflammatory and lung resident cells. There

are presently 11 known families of PDE and at least 21

isoforms with numerous splice variants that are character-

ized by differences in structure, substrate specificity, inhi-

bitor selectivity, tissue and cell distribution, regulation by

kinases, protein–protein interaction and subcellular distribu-

tion (Houslay et al., 2005; Bender and Beavo, 2006).

However, targeting PDE4, the enzyme responsible for

metabolizing cyclic AMP has been the focus for the

development of drugs that could prove beneficial in

the treatment of respiratory diseases such as asthma (Torphy,

1998; Houslay et al., 2005). It is therefore of interest that

plasma levels achieved with a dose of theophylline that

demonstrated significant anti-inflammatory activity (Sullivan

et al., 1994) was well below the Ki for PDE inhibition and

suggested that PDE4 inhibition alone does not completely

explain this drugs clinical effectiveness (Barnes et al., 2005).
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Nevertheless, highly potent and selective PDE4 inhibitors

have been developed to target inflammatory airway disease.

This strategy is not unique and is exemplified with the

development and clinical success of a PDE5 inhibitor,

sildenafil, for the treatment of erectile dysfunction (Boolell

et al., 1996).

PDE4

PDE4 catalyses the hydrolysis of cyclic AMP, which termi-

nates the downstream signalling of this second messenger.

There are four gene families (A–D), although there is added

complexity with over 20 splice variants (Houslay et al.,

2007). Hydrolysis of cyclic AMP is a common feature of this

family, and it is clear that these isoforms can be targeted to

different domains within the extracellular compartment and

their activity differentially regulated by kinases, suggesting

that these isoforms have specific functions in the control of

cellular activity (Houslay et al., 2007). X-ray crystallography

has resolved the catalytic domain of these enzymes, which

are comprised of three important domains, consisting of a

bivalent metal-binding pocket (Zn2þ , Mg2þ ), which forms a

complex with the phosphate moiety of cyclic AMP, a pocket

containing glutamine (Q pocket), which forms hydrogen

bonds with the nucleotide (purine) moiety of cyclic AMP,

and a solvent pocket. PDE4 inhibitors occupy this active site

through a number of important interactions and prevent

cyclic AMP metabolism. These include indirect binding to

the metal ions by the formation of hydrogen bonding to

water, whereas hydrophobic interactions between the planar

ring structure of these inhibitors and hydrophobic amino-

acid residues such as phenylalanine and isoleucine serve to

‘clamp’ the inhibitor within the active site and hydrogen

bond interaction between the aromatic ring structure of

these inhibitors and the invariant glutamine residue in the Q

pocket, the site which is normally occupied by the nucleo-

tide moiety of cyclic AMP (Xu et al., 2000; Card et al., 2004;

Wang et al., 2007).

There are considerable challenges to the synthesis of

subtype selective inhibitors due to the high degree of

sequence and structural homology within the catalytic

domains of the PDE4 subtypes (Xu et al., 2000; Card et al.,

2004; Wang et al., 2007). One possibility might be to exploit

subtle differences between the interaction of these inhibitors

to the catalytic active site, or alternatively, by non-active site

inhibition by targeting the N-terminal region of the enzyme,

which contain phosphorylation sites and/or protein-binding

sequences and so indirectly interfere with PDE4 activity

(Card et al., 2004; Wang et al., 2007).

With well over 100 mediators including prostaglandins,

leukotrienes, chemokines, cytokines, proteases and growth

factors and numerous cell types including mast cells,

neutrophils, eosinophils, macrophages, DCs and lympho-

cytes implicated in the pathogenesis of asthma and COPD

(Barnes, 2006b; Holgate, 2007), suggests that a chemical

strategy designed to target a single mediator or cell type is

unlikely to be successful particularly as many of these

mediators and cell types have overlapping and complemen-

tary roles in disease pathology. PDE4 is expressed in a

number of cell types that are considered suitable drug targets

for the treatment of respiratory diseases such as asthma and

COPD (Table 1). It might reasonably be argued that targeting

PDE4 could potentially suppress the function of numerous

cell types; however, it is well known that other PDE enzymes

Table 1 PDE distribution within human cells of interest for the treatment of respiratory diseases such as asthma and COPD

Cell type PDE4 Subtypea Other PDE’s Biological consequence of PDE4 inhibition Reference

T lymphocytes
CD4 CD8

B4A 3, 7 Inhibition of proliferation and cytokine
release

(Gantner et al., 1997b; Hatzelmann and Schudt,
2001; Smith et al., 2003; Peter et al., 2007)

B cells B, D4A 7 Increased proliferation (Gantner et al., 1998; Smith et al., 2003)
Eosinophils A, D4B 7 Inhibition of superoxide anion

generation; delayed apoptosis
(Hatzelmann and Schudt, 2001; Smith et al., 2003;
Parkkonen et al., 2007)

Neutrophils A, D4B 7 Inhibition of superoxide anion and
neutrophil elastase release

(Hatzelmann and Schudt, 2001; Smith et al., 2003;
Jones et al., 2005)

Monocyte B 4A, D 7 Inhibition of TNF-a release (Hatzelmann and Schudt, 2001; Smith et al., 2003;
Heystek et al., 2003; Jones et al., 2005)

Macrophages A, B, D 1, 3, 7 Inhibition of TNF-a releaseb (Gantner et al., 1997a; Hatzelmann and
Schudt, 2001; Smith et al., 2003;
Barber et al., 2004)

DCs A4B, D 1, 3 Inhibition of TNF-a release (Hatzelmann and Schudt, 2001;
Heystek et al., 2003)

Mast cells Little if any mast cell stabilization (Weston et al., 1997; Shichijo et al., 1998)
Airway
epithelial cells

1–3, 4, 5, 7, 8 Increased production of PGE2; inhibition
of IL-6 production

(Fuhrmann et al., 1999; Haddad et al., 2002)

Endothelial
cells

2, 3, 4, 5 Inhibition of adhesion molecule
expression

(Jones et al., 2005; Sanz et al., 2007)

Fibroblasts A, B 4D 1, 4, 5, 7 Inhibition of fibroblast chemotaxis;
inhibition of pro-MMP1, 2 release

(Kohyama et al., 2002; Smith et al., 2003;
Martin-Chouly et al., 2004; Dunkern et al., 2007)

Sensory
nervesc

D 1, 3 Inhibition of neuropeptide release (Spina et al., 1995)

Abbreviations: CD, cluster of differentiation; COPD, chronic obstructive pulmonary disease; IL, interleukin; TNF, tumour necrosis factor.
aPDE4 subtype mRNA expression illustrating relative abundance in cells.
bIn the presence of a PDE3 inhibitor.
cGuinea-pig sensory nerves.
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are also expressed in these cells and the contribution of other

PDEs to cell function (for example, PDE3, PDE7) in the

context of benefits in respiratory diseases is being explored

(Smith et al., 2004; Boswell-Smith et al., 2006b). It would

seem prudent to develop subtype selective PDE4 inhibitors

in attempts to maximize therapeutic benefit at the expense

of adverse effects, whereas there is also the possibility that

nonselective PDE inhibitors might offer a better approach in

targeting multiple target cells in the disease process. Indeed,

it has been suggested that clozapine is a better anti-psychotic

than newer generation atypical anti-psychotics because this

drug targets numerous receptors, and as such, has been

described as a ‘magic shotgun’, for the treatment of

Schizophrenia (Roth et al., 2004).

Asthma and PDE4

Increased PDE4 function due to either increased protein

expression or activity might provide a plausible mechanism

to account for the pathogenesis of asthma. The expression of

a novel and distinct cyclic AMP-PDE was isolated from

monocytes obtained from individuals with atopic dermatitis.

This enzyme had increased PDE activity and as a conse-

quence monocyte function was increased and thought to be

the underlying basis for the pathology associated with atopic

dermatitis (Chan et al., 1993). However, soluble PDE4

activity was not increased in a range of peripheral blood

leukocytes from atopic patients of either mild or severe

severity (Gantner et al., 1997b). Similarly, increased total PDE

catalytic activity was observed in peripheral blood mono-

cytes from individuals with mild asthma, whereas this

was associated, paradoxically, with reduced PDE4 activity

(Landells et al., 2000) and the expression of PDE4A–D was

not increased in peripheral blood cluster of differentiation

(CD)4 positive T lymphocytes in patients with mild asthma

(Jones et al., 2007). Together these studies indicate that

the underlying pathogenesis of mild asthma cannot be

attributed to enhanced PDE4 expression or activity.

Numerous preclinical studies in models of allergic pul-

monary inflammation have repeatedly documented the

ability of PDE4 inhibitors to inhibit two important char-

acteristic features of asthma, namely, the recruitment of

eosinophils to the airways and bronchial hyperresponsive-

ness (Torphy, 1998; Spina, 2003). One disadvantage of these

studies is the inability to ascertain the role of PDE4 isoforms

because of the nonselective nature of the PDE4 inhibitors

currently under development. The use of genetically mod-

ified mice has revealed some interesting findings. Airway

inflammation characterized by recruitment of eosinophils to

the airways of mice deficient in PDE4D was no different to

wild-type controls (Hansen et al., 2000). This indicated that

other PDE4 subtypes contributed in the metabolism of

intracellular cyclic AMP, as cell recruitment to the airways

was inhibited when animals were treated with nonselective

PDE4 inhibitors (Kung et al., 2000; Kanehiro et al., 2001).

However, airway obstruction caused by methacholine was

enhanced in wild-type allergic mice but was abolished in

PDE4D gene-deficient mice. These mice were hyporespon-

sive to this stimulus, even in the absence of allergic

sensitization and appeared to be related to an increase in

dilator prostaglandin production in the airways of these

gene-deficient mice (Hansen et al., 2000; Mehats et al., 2003).

However, this effect was specific for methacholine because

the enhanced airway obstruction in response to serotonin

was unaffected by the removal of PDE4D (Hansen et al.,

2000). This study highlighted the potential complimentary

role of PDE4 isoforms in regulating allergic airway inflam-

mation, and the need to target more than one PDE4 isoform

because inhibition of the inflammatory response, hyperre-

sponsiveness and airway remodelling in allergic wild-type

mice was observed following exposure to PDE4 inhibitors

such as rolipram and roflumilast (Kung et al., 2000; Kanehiro

et al., 2001; Kumar et al., 2003).

The numerous preclinical studies reporting the anti-

inflammatory potential of PDE4 inhibitors in models of

allergic inflammation and in human cells in vitro have been,

to some degree, corroborated in clinical trials in asthmatic

patients. Twice daily treatment for 9.5 days with the PDE4

inhibitor CDP840 inhibited the development of the late

phase response in asthmatic patients by 30% (Harbinson

et al., 1997). A similar degree of inhibition of the late phase

response was observed following once daily treatment for

7–10 days with roflumilast (van Schalkwyk et al., 2005). This

late phase response is used by clinicians to model the

inflammatory component following an allergic insult to the

airways. In both studies, the effects of drug treatment on the

acute allergen bronchoconstriction was modest and is

consistent with the lack of demonstrable action of PDE4

inhibition on mast cell function (Table 1) and highlight the

role of other PDE enzymes, namely PDE3 in the context of

airway smooth muscle relaxation (Boswell-Smith et al.,

2006b). Bronchial hyperresponsiveness was not reduced by

these drugs, although a later study purported to show

modest protection against allergen-induced bronchial hyper-

responsiveness (Louw et al., 2007), which might suggest that

PDE4 may not be a suitable target for this particular

phenomenon, or that higher doses are required to provide

complementary and persistent inhibition of the enzyme and

hence attenuation of bronchial hyperresponsiveness. It is of

interest that roflumilast has a plasma half-life of 16 h

following a single p.o administration, and is metabolized

by CYP3A4 to the active N-oxide metabolite, which has

considerably greater bioavailability with a half-life of 20 h

that would favour prolonged enzyme exposure (David et al.,

2004). This favourable pharmacokinetic profile would be

anticipated to produce long periods of PDE4 inhibition.

There was a significant reduction in the activity of circulat-

ing monocytes in patients maintained on roflumilast for 4

weeks, whereas the magnitude of this change was small,

resulting in approximately 1.3-fold reduction in tumour

necrosis factor-a production by monocytes in response to

endotoxin challenge in vitro (Timmer et al., 2002). Therefore,

it is questionable whether total PDE4 inhibition can be

achieved in cells within the airway tissue compartment at

the dose used in clinical studies.

Side effects most commonly reported were headache,

nausea and diarrhoea of a mild-to-moderate severity

(Harbinson et al., 1997; van Schalkwyk et al., 2005) and

suggest that unless the risk/benefit ratio can be improved,

then this may well hamper the use of this drug in asthma.
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This is a worthy aim to pursue in the light of a clinical study

reporting comparable clinical efficacy between roflumilast

and beclomethasone diproprionate in persistent asthma

(Bousquet et al., 2006).

COPD and PDE4

Chronic obstructive pulmonary disease unlike asthma is

caused by cigarette smoking, although in developing

countries smoke derived from burning biomass fuels is also

a predisposing factor. The nature of the inflammatory

response is distinct from asthma and is characterized by

the activation of macrophages, airway epithelial cells, which

in turn, secrete a range of chemokines and lipid mediators

resulting in the recruitment of neutrophils and CD8þ

T lymphocytes. The secretion of a range of proteases from

neutrophils (elastase, MMP9, cathepsins) and macrophages

(MMP12) is thought to contribute towards airway fibrosis of

the small airways, increased mucus secretion and destruction

of the alveolar wall (Barnes, 2006b) These pathological

changes give rise to the symptoms of cough, mucus

secretion, difficult breathing and emphysema. Many of the

cell types implicated in this disease process express PDE4

(Table 1).

The expression of PDE4A–D in peripheral blood neutro-

phils and CD8T cells is not altered in patients with mild

COPD (Jones et al., 2007). However, the expression of

PDE4A4 and total cyclic AMP PDE activity was significantly

increased in macrophages purified from bronchoalveolar

lavage fluid from patients with mild-to-moderate COPD

compared with healthy patients or smokers who did not

present with COPD (Barber et al., 2004). Of the 12 PDE4

variants analysed, only the activity of PDE4A4 was increased

and suggested that local events/processes within the lung of

patients with COPD specifically upregulated this variant

(Barber et al., 2004). However, the functional consequence of

this change remains to be established in light of findings

showing that PDE4 inhibition has modest effect in suppres-

sing tumour necrosis factor-a production from human

macrophages derived from cultured monocytes, and the

contribution of PDE3 and PDE7 in regulating function in

this cell type cannot be ignored (Gantner et al., 1997a; Smith

et al., 2004).

There are a limited number of preclinical in vivo models of

COPD. However, the recruitment of neutrophils to the

airways can be readily induced using the bacterial wall

component, endotoxin, although it is widely appreciated

that this stimulus can only model neutrophil recruitment to

the airways. The recruitment of these cells to the airways of

wild-type mice was inhibited by around 50% in PDE4B and

PDE4D-deficient mice, and a greater degree of inhibition was

observed when wild-type mice were treated with rolipram

(Ariga et al., 2004). This once again highlighted the

complimentary roles of PDE4 isoforms in regulating

neutrophil recruitment to the airways. Similarly, smoking

induced neutrophil recruitment to the airways, release of

chemokines and emphysematous changes to the lung were

attenuated by PDE4 inhibitors (Martorana et al., 2005;

Leclerc et al., 2006). Together, these studies highlight the

utility of inhibiting PDE4 in cell types implicated in this

disease.

A number of phase III clinical trials have assessed the

potential utility of PDE4 inhibitors in the treatment of COPD

(Rabe et al., 2005; Rennard et al., 2006; Calverley et al., 2007).

All three studies report modest but significant improvements

in spirometry over placebo, quality of life scores and

reduction in the number of exacerbations in the severest

group of COPD patients. The mechanism of the improve-

ment in spirometry is unlikely to be due to relaxation of

airway smooth muscle because this drug class has weak

bronchodilator activity. It is possible that this improvement

is due to an anti-inflammatory action of the drugs (Table 1),

although no biomarker of inflammation was measured in

these studies. However, separate studies have addressed

whether PDE4 inhibitors are anti-inflammatory in COPD.

Both roflumilast (Grootendorst et al., 2007) and cilomilast

(Gamble et al., 2003) reduced the number of inflammatory

cells such as neutrophils and lymphocytes recruited to the

airways and the levels of two biochemical markers of this

disease, namely interleukin-8 and neutrophil elastase. The

magnitude of the change in the number of these inflamma-

tory cells and concentration of mediators was between 30

and 50% and might underlie their beneficial action in the

phase III clinical trials. However, the biomarker study also

highlights a recurring theme that complementary inhibition

of PDE4 was not achievable because of dose-limiting side

effects; or alternatively, other PDE isoforms (for example,

PDE3, 7, see Table 1) in these same inflammatory processes

may also require targeting for a full anti-inflammatory action

to be revealed in this disease.

The most common side effect reported with roflumilast

included diarrhoea (9%), headache (6%) and nausea (5%)

(Rabe et al., 2005; Calverley et al., 2007), which was of the

same order of magnitude as that reported with cilomilast,

although abdominal pain and vomiting were also reported

for this drug (Rennard et al., 2006). The adverse effects

appeared to disappear with continued use but were a major

reason why patients discontinued with the study during the

first 3–4 weeks of treatment. No cardiovascular liabilities

were noted.

PDE4 inhibitors: unwanted effects

Nausea is a commonly reported side effect associated with

theophylline and therefore not surprisingly, PDE4 inhibitors

also produce a similar constellation of adverse events and are

a major drawback for the therapeutic use of these drugs. The

mechanism responsible for this side effect has been investi-

gated in an attempt to discover non-emetic PDE4 inhibitors.

The direct recording of neuronal activity within the area

postrema conclusively demonstrated that substances known

to cause nausea (for example, apomorphine) caused the

excitation of neurones within the area postrema of dogs

(Carpenter et al., 1988). Neuronal activity within the area

postrema was also increased following the systemic admin-

istration of 8-bromo cyclic AMP or following elevation of

endogenous levels of cyclic AMP within neurones by

forskolin, an activator of AC (Carpenter et al., 1988).

Elevated levels of cyclic AMP within the area postrema

PDE4 inhibitors and respiratory disease
D Spina 311

British Journal of Pharmacology (2008) 155 308–315



enhanced the emetogenic response. Dogs treated with

theophylline and the PDE4 selective inhibitor, 4-(3-butoxy-

4-methoxyphenyl)methyl-2-imidazolidone (Ro 20–1724)

reduced the emetic threshold of the D2 agonist, apomor-

phine (Carpenter et al., 1988). Similarly, the i.c.v. adminis-

tration of highly potent PDE4 inhibitors also induced emesis

in the ferret (Robichaud et al., 1999), and the emetic

response to systemically administered PDE4 inhibitors is

reduced by anti-emetic agents including the 5HT3-antago-

nist, ondansetron, and the neurokinin 1 antagonist, (þ )-

(2S,3S)-3-(2-[11C]methoxybenzylamino)-2-phenylpiperidine

(CP-99994) (Robichaud et al., 1999, 2001).

Many studies have documented the expression of PDE4D

within the area postrema, nucleus tractus solitaris and

nodose ganglion neurones in various species including

man and implicated this isoform in nausea and vomiting

(Cherry and Davis, 1999; Takahashi et al., 1999; Perez-Torres

et al., 2000; Lamontagne et al., 2001). However, it should also

be recognized that detectable transcript for PDE4B was also

found within the nucleus tractus solitaris and area postrema

in humans and rodents, respectively, and could be involved

in the emetic response (Perez-Torres et al., 2000). As rodents

do not possess an emetic reflex, it is not possible to directly

investigate the role of different isoforms of PDE4 in emesis.

However, a surrogate biological response that measures the

reversal of anaesthesia induced by a2-adrenoceptor agonists

has been used to study the role of PDE4 subtypes in emesis

(Robichaud et al., 2001, 2002a). It was previously shown that

the ability of PDE4 inhibitors to induce emesis in the

ferret was inhibited by the a2-selective agonist, clonidine

(Robichaud et al., 2001) and suggested that raising cyclic

AMP within central noradrenergic terminals by PDE4

inhibitors promoted emesis, and this could be attenuated

by a2-adrenoceptor-mediated inhibition of AC. The hypno-

tic action of xylazine was reversed in rodents treated with

PDE4 inhibitors (Robichaud et al., 2001) and therefore used

as a surrogate for emesis. Deletion of PDE4D and not PDE4B

reduced the duration of anaesthesia induced by xylazine,

compared with wild-type mice, and second, the ability of

PDE4 inhibitors to shorten xylazine-induced anaesthesia

was impaired in PDE4D but not PDE4B knockout mice

(Robichaud et al., 2002b). Together, these studies suggested

that PDE4 inhibitors with low affinity for PDE4D should

have reduced emetic potential.

However, it is not entirely clear whether PDE4D inhibition

alone is the sole basis of emesis as there are examples of PDE4

inhibitors that document in vivo anti-inflammatory activity

but are not emetogenic (Gale et al., 2002) and there are

examples of PDE4 inhibitors that have little emetogenic

activity but potent anti-inflammatory activity in preclinical

studies (Aoki et al., 2000, 2001). Similarly, the emetic profile

of various PDE4 inhibitors in the ferret cannot be explained

by their selectivity for PDE4D or to differences in PDE4D

inhibitor potency (Figure 1). One possible explanation might

be that some PDE4 inhibitors preferentially partition within

the CNS and hence the degree of PDE4D inhibition in area

postrema neurones might explain the differences in the

emetic potential of these drugs (Aoki et al., 2001; Robichaud

et al., 2002a). However, the concentration of the ‘low emetic’

PDE4 inhibitor, CT-2450 within the CNS was comparable to

that achieved by the most potent emetic PDE4 inhibitor,

PMNPQ (Figure 1). Second, the area postrema is not

completely behind the blood–brain barrier (Gross et al.,

1990), and therefore accessible to free drug within the

circulation. It would seem unlikely that differential parti-

tioning of these inhibitors within the CNS is a likely

explanation for their ability to induce emesis. However, it

remains to be established whether the magnitude of PDE4

inhibition within the area postrema differs between the

various PDE4 inhibitors.

A number of preclinical studies have highlighted a number

of disadvantages to targeting PDE4, include the development

of mesenteric vasculitis, immunosuppression (Spina, 2004),

heart failure and arrhythmia (Lehnart et al., 2005). However,

none of these events appear to be realized in phase II and

phase III clinical trials undertaken with cilomilast and

roflumilast. Similarly, slow release theophylline has been

used for decades in the treatment of asthma and COPD and

has not been associated with a number of these potentially

adverse events (Ohta et al., 2004). It has been suggested that

PDE4 inhibitors may have proinflammatory properties

(McCluskie et al., 2006). This conclusion was based on the

finding that roflumilast at very high doses (100 mg/kg)

promoted the recruitment of neutrophils to the airways and

this correlated with the release of interleukin-8 from

cultured endothelial cells in vitro, although the concentra-

tions required to achieve these effects were at least 1000

times greater than the ED50 and EC50 values reported for

roflumilast against several in vivo biomarkers of inflamma-

tion and cell function in vitro, respectively (Bundschuh et al.,

2001; Hatzelmann and Schudt, 2001). It is unlikely that the

plasma concentrations required to produce this purported

proinflammatory effect could be achieved even with chronic

dosing. Similarly, another study has shown that PDE4

inhibitors, at concentrations that are pharmacologically

relevant, delay apoptosis of neutrophils and eosinophils,

an effect that increased when combined with b2-adrenocep-

Figure 1 Line graph drawn from data presented in Table 2 of
Robichaud et al. (1999) showing the number of retches (a) and the
percentage of animals who retch (b) in response to increasing p.o
doses of PDE4 inhibitors, PMNPQ (open circles), R-rolipram (closed
circles) and CT-2450. 1Inhibitory potency (IC50) for these inhibitors
against human cloned PDE4 subtypes. 2Concentration of PDE4
inhibitors measured in homogenates of whole brain and in plasma
1 h following systemic administration of drug. 3IC50 values against
whole blood tumour necrosis factor-a (references cited in Robichaud
et al. 2002b). CT-2450, (R)-N-(4-[1-3-cyclopentyloxy-4-methoxy-
phenyl)-2-(4-pyridyl)ethyl]phenyl)-N0-ethylurea; PMNPQ; 6-(4-pyr-
idylmethyl)-8-(3-nitrophenyl)quinoline.
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tor agonists (Parkkonen et al., 2007). However, to what

extent these findings translate into the clinic, particularly, if

combined with bronchodilator drugs, remains to be estab-

lished. The clinical evidence suggests that PDE4 inhibitors

suppress and not exacerbate inflammation in the airways

(Gamble et al., 2003; Grootendorst et al., 2007).

PDE4 inhibitors and the future

Although there is cause for optimism concerning the

potential therapeutic utility of PDE4 inhibitors for the

treatment of respiratory diseases such as asthma and COPD,

it is clear that further improvements are required. Strategies

at improving the risk to benefit ratio will be important, if

this drug class is to be widely used. The therapeutic window

for anti-inflammatory action of these drugs and side effects

such as nausea and emesis is probably not wide enough for

cilomilast, and may limit the use of roflumilast in asthma.

There are PDE4 inhibitors currently in development,

which appear to lack significant emetic action (for

example, oglemilast) (Glenmark Pharmaceuticals, 2005)

and IPL512602 (Inflazyme pharmaceuticals, 2005), although

the molecular basis for this has not been published.

Most PDE4 inhibitors under development are designed for

p.o administration, however, the inhaled route would

deliver PDE4 inhibitor directly to target cells within the

lung and thereby minimize systemic absorption as in

the case of AWD 12-281 (N-(3,5-dichloropyrid-4-yl)-[1-(4-

fluorobenzyl)-5-hydroxy-indole-3-yl]-glyoxylic acid amide

(Kuss et al., 2003) or UK-500001 (Phillips et al., 2007; Vestbo

et al., 2007), although clinical trials in respiratory disease

have thus far been disappointing. Nonetheless, the develop-

ment of a potent, long acting PDE4 inhibitor through the

inhaled route would offer a solution to the issues of emesis

and nausea. Another approach might be the use of antisense

oligodeoxynucleotides targeting PDE4, which could be

delivered by the inhaled route, and in view of the positive

results obtained in the successful targeting of the adenosine

A1 receptor in a rabbit model of allergic inflammation (Nyce

and Metzger, 1997), illustrates the potential of this approach.

Another reason why targeting PDE4 alone may not fully

resolve airway inflammation is the fact that other PDE types

exist in structural and inflammatory cells in the lung

(Table 1) and therefore, targeting multiple PDE enzymes

may be required for optimal anti-inflammatory action. For

example, the macrophage is viewed as a critical cell type in

the pathogenesis of COPD (Barnes, 2006b); however, the

activity of these cells is only inhibited to a small degree by

PDE4 inhibitors (Hatzelmann and Schudt, 2001) and the

potential functional involvement of PDE3 and PDE7 in these

cells cannot be completely ignored. The inhibitory action

of PDE4 inhibitors on the cellular activity of CD8þ

T lymphocytes and macrophages was significantly increased

in the presence of PDE7 selective inhibitors (Smith et al.,

2004). Similarly, combined PDE3 and PDE4 inhibitor in a

single molecule offers the advantage of delivering a broncho-

dilator and anti-inflammatory substance. Moreover, it is

likely that retention of the inhibitor within the lung may be

required to maintain anti-inflammatory activity within the

airways (Boswell-Smith et al., 2006b).

Conclusion

A number of clinical trials assessing the efficacy of PDE4

inhibitors for the treatment of respiratory diseases such as

asthma and COPD have been moderately successful. The

dose limiting side effects of nausea, emesis and headache

potentially limit the utility of these drugs. However, there

are examples of PDE4 inhibitors that have low emetogenic

potential, although the molecular basis of this phenomenon

remains to be established. Other strategies including delivery

through the inhaled route, development of subtype selective

PDE4 inhibitors, use of mixed PDE inhibitors, interference

with PDE4 activation, targeting proteins that are involved in

locating PDE4 to specific microcellular domains and finally

the potential of antisense oligonucleotides may offer

another solution to the problem of targeting PDE4 in the

context of respiratory diseases, is a cause for optimism.
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