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ABSTRACT

The induction and repair of DNA strand breaks were studied in control and
IUdR labeled CHO cells after irradiation with low-energy X rays. More DNA
strand breaks were found in IUdR labeled compared to control cells. If the
data were least square fitted, the slope ratios (IUdR/control) were 1.23
immediately after irradiation and 1.22 after 60 min of repair. Using the linear
quadratic model, the ratio between the two a-terms was 1.43 after 60 min
repair. After 120 min of repair, the number of DNA breaks in control cells was
close to zero for doses below 4 Gy while for IUdR labeled cells the number was
significantly higher than zero.
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INTRODUCTION

It is well known that incorporation of halogenated thymidine analogs
into cellular DNA increases the radiosensitivity of mammalian cells as
measured by survival (1-4), and may affect the ability of cells to repair
radiation damage (2,5). Several reports have shown that the degree of
radiosensitization increases as the percentage of thymidine replacement
increases (6,7). Although the mechanism of sensitization has not been fully
elucidated, it is probably not related to secondary effects such as inhibition of
DNA polymerase or inhibition of enzymes involved in thymidine synthesis
(89).

Recently Fairchild et al. (10) reported theoretical calculations showing
that IUdR radiosensitization might be enhanced substantially by the use of
photon energies just above 33.2 keV, the K absorption edge of iodine (10).
According to Fairchild et al. (10) the enhancement would result from the
effects of the Auger electron cascade which follows the creation of vacancy in
the K shell of iodine via the photoelectric effect. These Auger electrons are
very effective in causing subcellular damage in critical cell structures in a
manner similar to 125] decay in DNA (11,12).

Cells which have incorporated IUdR into their DNA show significant
reductions of both the slope and the shoulder of their radiation survival
curves (13,14). The a-coefficient in the linear-quadratic model, ¥ = aD + BD2,
which is supposed to account for the formation of double-strand breaks in
one single radiation event (15), has been reported to be significantly higher for
Xirradiated IUdR labeled cells compared to control cells (13).
Radiosensitization by IUdR has also been correlated with increases in
chromosomal aberrations and micronuclei formation (16). Few studies have
been reported on the induction and repair of DNA strand breaks in
mammalian cells after IUdR incorporation, although the enhancement in
sensitivity suggests the involvement of DNA damage and repair (17,18).

The effect on induction and repair of DNA strand breaks after
irradiation with low-energy X rays has been examined using the DNA
unwinding technique with double-labeling (19). Incorporation of IUdR into
CHO cells followed by irradiation resulted in an increased number of DNA
strand breaks in IUdR labeled cells. Furthermore the repair of the induced
strand breaks in IUdR containing cells was less efficient than in the controls.
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MATERIAL AND METHODS
Culturing Conditions

Exponentially growing CHO cells were cultured in plastic flasks (Nunc,
Roskilde, Denmark) containing Ham's F10 (SVA, Uppsala, Sweden),
supplemented with 10% newborn calf serum (Gibco, N.Y. USA), 1.0 mM L-
glutamine, 100 IU/ml penicillin and 100 pg/ml streptomycin and maintained
in a 5% CO, atmosphere at 37°C.

Labeling of DNA

Iododeoxyuridine (IUdR) was added to cells to a final concentration of
10® M and the cells were incubated for three days in darkness. The IUdR
solution was stored frozen in a weak alkaline stock solution of 1 mM. During
the TUdR labeling, the cells were grown in medium prepared from thymidine
depleted Ham's F10 medium. Cells were labeled with 7.4 kBq/ml of 3H-
thymidine (3H-TdR) or 1.85 kBq/ml of 14C-thymidine (14C-TdR) (Amersham,
U.K) for 18 h before harvest. The cells were then washed 2-3 times in
phosphate buffered saline (PBS) and, after the addition of new prewarmed
medium, the incubation continued for an additional 3 h at 37°C.

Irradiation Conditions

The cells were irradiated at 0°C using a Siemens Stabilipan therapy
Xray unit operating at 75 kV and 20 mA with a total filtration of 4 mm Al.
The radiation dose and radiation quality were measured using an ionization
chamber and thermoluminescence dosimeters. The half-value layer (HVL)
for the 75 kV X rays was measured to be 4.3 mm Al corresponding to a mean
photon energy of 38 keV (13). The dose rate was 0.16 Gy per min.

DNA Strand Break Analysis

The cells were detached from the flask with trypsin (0.25% in PBS).
Prior to irradiation cells were mixed according to the following schedule:
Cells which had incorporated IUdR and 3H-TdR were mixed with only 14C-
TdR labeled cells. Furthermore 3H-TdR labeled cells were mixed with IUdR
and '¥C-TdR labeled cells (19,20). This implies that JUdR labeled and control
cells were treated simultaneously during the DNA strand break analysis. The
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number of DNA strand breaks was determined by the unwinding technique
either directly after the irradiation or after a repair period of 60 or 120 min.
Briefly, 100 pl of the cell suspension was added to 1 ml of a weak alkaline
solution and left in the dark for 30 min. After neutralization the samples
were sonicated and, after adding SDS, stored at -20°C until chromatography
was performed. Single- and double-stranded DNA were separated on
hydroxylapatite and the 3H- and 14C-activities were then determined in a
liquid scintillation counter (Packard Instr. Co., USA) using Instagel (Packard
Instr. Co., USA) as a scintillation solution. The number of DNA strand breaks,
the sum of the single- and double-strand breaks, was calculated according to
Rydberg (19).

RESULTS

In order to estimate the amount of cellular IUdR uptake, cells were
incubated with 12°JUdR of known specific activity for 72 h. Following the
incubation the DNA content and the incorporation of 125IUdR per cell were
determined. The replacement of thymidine with IUdR under these
circumstances was estimated to be on average 10%.

Compared to control cells, some strand breaks were induced in
IUdR labeled cells during the labeling period although care was taken to
avoid light exposure to the cells. The experiments were repeated several
times and the mean values based on 10 to 30 samples.

Figure 1 illustrates the induction of DNA strand breaks after irradiation
with low-energy Xrays. The number of DNA strand breaks increases in a
dose-dependent manner up to 5 Gy where the curves approached saturation
which probably is due to the limit of the method. The data were least-squares
fitted and the slopes of the dose-response curves were found to be
0.32+0.02 Gy! for IUdR labeled cells and 0.26 £ 0.02 Gy! for control cells. The
relation between the slopes results in a ratio of 1.23 indicating a higher
response for the IUdR labeled cells.

Figure 2 shows the DNA strand breaks that are remaining after 60 min
of incubation at 37°C. The number of residual DNA strand breaks seems to be
dose-dependent for both the control and the IUdR labeled cells. The slopes
were found to be 0.037 £ 0.01 Gy! and 0.030 + 0.007 Gy™! for IUdR labeled and
control cells, respectively, and the ratio between the two slopes was 1.23.
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FIG. 1. The number of DNA strand breaks induced in control and IUdR labeled cells
after irradiation with low-energy Xrays. The dose rate was 0.16 Gy min"l. The data
were fitted by the least squares method.

The repair of DNA strand breaks was also fitted to the linear-quadratic
relationship (y = aD + BD?) using an iterative least-square fit where D is the
dose in Gy. The o-coefficients were 4 X 1023 £0.4 X103 Gy! for IUdR and
28X 102 +0.5X 103 Gyl for control cells which yields a ratio of 1.43. This
indicated that the relative difference in the low dose range had increased
during the 60 min repair phase.

The results obtained after 120 min of repair are presented in Fig. 3. In
the low dose region (up to approximately 4 Gy), very few non-rejoined breaks
were found in control and IUdR groups. For control cells the residual breaks
in this region were not significantly different from zero, while for the IUdR
labeled cells the number was significantly higher than zero. The difference
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FIG. 2. Residual DNA strand breaks after 60 min of repair at 37°C in control and IUdR
labeled cells as a function of radiation dose. The data were fitted by the least squares
method.

between the two treatments after 120 min repair seems to be most
pronounced in the low dose range.

DISCUSSION

The results show that replacement of thymidine by IUdR into cellular
DNA sensitizes the cells to a subsequent exposure to low-energy X rays and
this effect persisted after a prolonged incubation. The DNA strand breaks
remaining after 60 min of incubation (repair phase) are assumed to be double-
strand breaks or other severe DNA damage since the single strand breaks are
repaired within 10 to 20 min of incubation (unpublished data). We therefore
suggest that the observed increase in radiation damage per unit radiation dose
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(A) Number of DNA strand breaks after 120 min of repair.
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FIG. 3. Residual DNA strand breaks after 120 min of repair at 37°C in (A) control and
(B) TUdR labeled cells as a function of radiation dose. The data were fitted to the
linear quadratic model.
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in IUdR labeled cells is an indication that more severe damage such as DNA
double-strand breaks have been induced relative to the controls. This
enhancement may be due to Auger processes, and previous survival studies
support the possibility that a high-LET component might be involved in the
radiation response of IUdR labeled cells (13). Our results are also consistent
with findings by Shinohara et al. (21) who suggested that X irradiation of
IUdR labeled HeLa cells induces critical DNA lesions for cell lethality.

Kinsella et al. (17,18) using the filter elution technique reported an
enhancement factor of about 1.5 for double-strand break induction and repair
in V79 cells after 23% replacement of thymidine bases. This ratio agrees fairly
well with our results considering the differences in thymidine replacement.
They also reported a higher enhancement factor for BrUdR than for IUdR
which is not consistent with the photoactivation hypothesis proposed by
Fairchild et al. (10).

There is growing evidence suggesting that double-strand breaks are the
ultimate lesion involved in the formation of chromosome aberrations
(22,23). In a previous study on micronuclei formation (16), a dose-modifying
factor of 1.3 was obtained which is in agreement with the data from the DNA
strand break studies. This similarity is particularly interesting because it
suggests a cause-effect relationship between the two phenomena.

CONCLUSION

Irradiation with low-energy Xrays was 1.2 times more efficient in
inducing DNA strand breaks in IUdR labeled cells than in control cells. After
repair, the corresponding value had increased and, according to the o/f
model, more double-strand breaks seem to be induced in IUdR labeled cells.
The results, however, give no ultimate answer to the possible involvement
of Auger electrons in the radiation response after IUdR incorporation.
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DISCUSSION

Martin, R. Have you compared OER for the two cell populations (re £
IUdR)?

Johanson, K. J. No. In order to study possible high-LET effects we have
performed some studies using low dose rate.

Baverstock, K. F. What was the dose rate?

Johanson K. J. 0.16 Gy/min.

Halpern, A. It is customary to use the term "double labeling" for cases
where the molecule contains two isotopes, not for the mixture of two singly-
labeled molecules.

Johanson, K. J. When using liquid scintillation techniques for detection
of radionuclides, the term double (or dual) labeling is often used when two
radionuclides are mixed in the scintillation vials.

Goodhead, D. T. What do you suggest might be the reason for the
curvature in the dose response for strand breaks after 120 min repair? Is this
not surprising if you are measuring ssb?

Johanson, K. J. The unwinding technique measures both single strand
breaks and double strand breaks. After 120 min of repair, there are mostly
double strand breaks left unrepaired. I have no good suggestion which can
explain the reason for the curvature. In the control cells it seems to be a
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threshold and then a linear increase. In IUdR containing cells, the threshold
seems to disappear but the linear part has a rather similar shape to the
control. Thus, it seems that a more serious DNA damage is induced in IUdR
containing cells.
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