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Chapter 15

Identification of Thioredoxin Target Protein Networks  
in Cardiac Tissues of a Transgenic Mouse

Cexiong Fu, Tong Liu, Andrew M. Parrott, and Hong Li

Abstract

The advent of sensitive and robust quantitative proteomics techniques has been emerging as a vital tool for 
deciphering complex biological puzzles that would have been challenging to conventional molecular biol-
ogy methods. The method here describes the use of two isotope labeling techniques—isobaric tags for 
relative and absolute quantification (iTRAQ) and redox isotope-coded affinity tags (ICAT)—to elucidate 
the cardiovascular redox-proteome changes and thioredoxin 1 (Trx1)-regulated protein network in 
cardiac-specific Trx1 transgenic mouse models. The strategy involves the use of an amine-labeling iTRAQ 
technique, gauging the global proteome changes in Trx1 transgenic mice at the protein level, while ICAT, 
labeling redox-sensitive cysteines, reveals the redox status of cysteine residues. Collectively, these two 
quantitative proteomics techniques can not only quantify global changes of the cardiovascular proteome 
but also pinpoint specific redox-sensitive cysteine sites that are subjected to Trx1-catalzyed reduction.

Key words Quantitative proteomics, Liquid chromatography, Tandem mass spectrometry, iTRAQ, 
Redox ICAT, Hypertrophy, Thioredoxin 1

Chemical labeling of peptides/proteins with isotope-coded 
reagents (1), rendering peptide/proteins with mass differences 
that are readily discernible in mass spectrometers, enables the com-
parative proteome quantitation from multiple biological samples. 
One advantage of the chemical-labeling technique is its versatile 
applicability to all sources of proteins (cells, tissues, serum, bone, 
hair, etc.). Unlike stable isotope labeling with amino acid in cell 
culture (SILAC) technique (2), which incorporates stable isotopic 
amino acids during cell culture, but is limited to proteins that can 
be retrieved from cultured cells that undergo rapid protein turn-
over. Here we will introduce the application of two distinct chem-
ical-labeling approaches—iTRAQ (1, 3) and ICAT (4, 5)—to 

1  Introduction
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Cexiong Fu et al.

quantify the proteome changes in left ventricular tissues of wild-type 
and a cardiac-specific Trx1 transgenic mouse model (6, 7).

iTRAQ reagents label the primary amines on the N-terminus and 
lysine residues of peptides and can accommodate the quantification 
of up to eight different samples simultaneously (8-plex iTRAQ (8)). 
The isobaric nature of iTRAQ reagents does not add to the complex-
ity of chromatography and the mass spectrum (MS) and only releases 
signature fragments (m/z 114–117 for 4-plex and 113–121 for 
8-plex) of individual tags upon collision-induced dissociation that 
can be observed in tandem mass (MS/MS) spectra for peptide 
identification and quantification (Fig. 1a). On the other hand, ICAT 
reagents, available in light and heavy versions, label free thiol groups 
of cysteine residues. ICAT reagents incorporate a biotin tag to enable 
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Fig. 1 Typical workflow for ICAT and iTRAQ quantitation. (a) In the iTRAQ workflow, protein samples are first 
subjected to TCEP reduction, MMTS alkylation, and trypsin digestion. The resulting tryptic peptides are then 
labeled by designated iTRAQ reagents separately. After quenching the reaction, labeled peptides are mixed 
and separated by multidimensional chromatography. Finally, MS data is acquired on a 4800 MALDI TOF/TOF in 
a data-dependent acquisition mode. (b) In the ICAT workflow, protein thiols are first labeled by either the light 
ICAT (control) or heavy ICAT (Trx1-overexpressing tissue) reagents. Protein disulfide bonds are then reduced by 
DTT and alkylated with IAM, sequentially. The labeled proteins are mixed, digested with trypsin and separated 
sequentially using SCX, avidin affinity, and RPLC separations. ICAT-labeled peptides are identified and quantified 
by a 4800 MALDI-TOF/TOF mass spectrometer. Peptides containing Trx1-reduced cysteines had an ICAT H/L 
ratio larger than one and can be quantified by the precursor peak intensity and identified by the MS/MS spec-
trum. Modified from Molecular & Cellular Proteomics, 2009 (8), 1674–1687 with permission
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Trx1 Targets in Mouse Heart

selective avidin-based enrichment of ICAT-labeled peptides from 
non-cysteine-containing peptides, therefore reducing sample com-
plexity. The light and heavy ICAT-labeled peptides appear as dou-
blets in MS spectra, within which the peak intensity/integrated 
chromatographic peak area of the doublet are used for peptide quan-
titation. Peptide sequence is obtained from the MS/MS spectra of 
either the light or heavy ICAT-labeled peptide (Fig. 1b). Many deriv-
atives of the ICAT technique were created to gauge the redox status 
of cysteines in peptides by introducing different reduction agents and 
workflows (5, 9, 10).

A general shotgun proteomics approach commonly deals with 
a massive number of tryptic peptides (20,000–100,000) in a single 
liquid chromatography coupled with a tandem mass spectrometer 
(LC/MS/MS) experiment (11). To maximize proteome coverage 
and discovery of low-abundant proteins, multiple chromatographic 
separations are routinely applied in conjunction with these chemi-
cal-labeling techniques for peptide fractionation and enrichment. 
Some of the most popular multidimensional chromatographic 
methods include multidimensional protein identification technol-
ogy (MUDPIT) (12), OFFGEL (13, 14), strong cation exchange 
coupled with reversed phase liquid chromatography (SCX-RPLC) 
(3, 15, 16), and SCX-affinity chromatography-RPLC (5, 7). Here 
we will describe the application of the latter two techniques for the 
preparation of iTRAQ and ICAT-labeled peptides for LC/MS/
MS identification and quantification of peptides and their reduc-
tion by Trx1.

Many lines of evidence (17, 18) have established Trx1, an 
11 kDa antioxidant protein, as a negative regulator of oxidative 
stress-induced hypertrophy. Here we demonstrate a detailed 
proteomics method involving the use of two complementary 
stable isotope labeling proteomics techniques to identify the 
cardiac Trx1-targeted protein network in a Trx1 transgenic 
mouse model. By use of this protocol, we were able to identify 
78 putative Trx1 reductive sites in 55 proteins (7), including 
many metabolic enzymes within the protein networks regulat-
ing the tricarboxylic acid (TCA) cycle and oxidative phosphory-
lation pathways that have been shown previously to be regulated 
by Trx1 (17). Some novel target protein networks, including 
the creatine–phosphocreatine shuttle, the mitochondrial per-
meability transition pore complex, and the cardiac contractile 
apparatus, were observed for the first time. By using the two 
comparative proteomics methods including iTRAQ and redox 
ICAT, we were able to find that Trx1 plays not only a conven-
tional role as an antioxidant but also a role in remodeling the 
cardiovascular system to regulate cardiac energy dynamics and 
muscle contraction.
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	 1.	The left ventricular heart tissues from control and Trx1-
overexpressed mice (three in each group) are diced into 
~2 × 2 mm cubes and rinsed thoroughly by ice-cold PBS (3×) 
to remove blood content.

	 2.	ICAT Lysis Buffer: 6 M urea, 2 % CHAPS, 1 % Triton X-100, 
and 30 mM Tris–HCl at pH 7.5 and 0.1 % (v/v) of protease 
inhibitor cocktail (Sigma, cat no. P8340, St Louis, MO, USA) 
(see Note 1).

	 3.	Omni Tissue Homogenizer: (Omni International Inc., 
Marietta, GA, USA).

	 4.	BCA Protein Assay Kit: (Pierce, cat #. 23225, Rockford, IL, 
USA).

	 5.	Spectra MAX 190 Microplate Spectrophotometer (Molecular 
Devices, Sunnyvale, CA, USA).

	 6.	iTRAQ Lysis Buffer: 150  mM TEAB, 1.0  % Igepal CA630 
(NP-40), 1.0  % Triton X-100, 0.1  %  v/v protease inhibitor 
cocktail.

	 1.	Cleavable ICAT® Reagent—10 Assay kit (Sciex Cat# 4339036, 
Forster City, CA, USA).

	 2.	Accessory for ICAT: Cartridge holder (4326688), needleport 
adaptor (4326689), outlet connector (4326690), avidin 
affinity cartridges (4326694), cation exchange cartridges 
(4326695).

	 3.	Cysteine Reducing Reagent: 50  mM Dithiothreitol (DTT, 
BioRad Cat #161-0611, Hercules, CA, USA). Cysteine.

	 4.	Alkylation Reagent: 50 mM Iodoacetamide (IAM, BioRad Cat 
# 163-2109, Hercules, CA, USA).

	 5.	Eppendorf Vacufuge concentrator 5301 (Eppendorf North 
America, Inc. Westbury, NY, USA).

	 1.	Reducing Reagent: 50  mM Tris-(2-carboxyethyl) phosphine 
(TCEP).

	 2.	Cysteine-Blocking Reagent: 200 mM methyl methanethiosul-
fonate (MMTS).

	 3.	HPLC grade ethanol.
	 4.	HPLC grade water.
	 5.	Trypsin (20 mg/vial, Promega, cat no. V5111, Madison, WI, 

USA).
	 6.	iTRAQ™ reagents: 114, 115, 116, 117, (Applied Biosystems 

Inc., ABI, Forster City, CA, USA).

2  Materials

2.1  Tissue 
Homogenization and 
Protein Extraction

2.2  ICAT Labeling

2.3  iTRAQ Labeling
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Trx1 Targets in Mouse Heart

	 7.	Eppendorf Vacufuge concentrator 5301 (Eppendorf North 
America, Inc. Westbury, NY, USA).

	 1.	Mobile Phase A: 10 mM KH2PO4 and 20 % acetonitrile (ACN), 
pH 3.0.

	 2.	Mobile Phase B: 600 mM KCl, 10 mM KH2PO4 and 20 % 
ACN, pH 3.0.

	 3.	BioCAD Sprint™ Perfusion Chromatography System 
(PerSeptive BioSystems).

	 4.	Column: Polysulfoethyl-A column (4.6 × 200  mm, 5  mm, 
300 Å, Poly LC Inc., Columbia, MD, USA).

	 1.	PepClean C18 spin columns (Pierce, cat #. 89870, Rockford, 
IL, USA).

	 2.	Loading Solution: 5 % ACN containing 0.5 % trifluoroacetic 
acid (TFA, Pierce, cat # 28904, Rockford, IL, USA).

	 3.	Activation Solution: 50 % ACN containing 0.5 % TFA.
	 4.	Elution Solvent: 70 % ACN.
	 5.	Eppendorf Vacufuge concentrator 5301 (Eppendorf North 

America, Inc. Westbury, NY, USA).

	 1.	Mobile Phase A: 5 % ACN containing 0.1 % TFA.
	 2.	Mobile Phase B: 95 % ACN containing 0.1 % TFA.
	 3.	LC-Packings Ultimate Chromatography System equipped with 

a Probot MALDI spotting device (Dionex, Sunnyvale, CA, 
USA).

	 4.	C18 PepMap trapping column (0.3 × 5  mm, 5  mm, 100  Å, 
Dionex, P/N 160454).

	 5.	C18 PepMap capillary column (0.1 × 150 mm, 3 mm, 100 Å, 
Dionex, P/N 160321).

	 6.	Matrix-Assisted Laser Desorption Ionization (MALDI) Matrix 
Solution: 7 mg/ml a-cyano-4-hydroxycinnamic acid (Sigma, 
cat #. 476870, St Louis, MO, USA) in 60  % ACN, 5  mM 
ammonium monobasic phosphate and internal peptide cali-
brants (50  fmol/ml each of (Glu1)-fibrinopeptide B (GFP, 
m/z 1,570.677, Sigma, cat #. F3261) and adrenocorticotropic 
hormone 18–39 (ACTH 18–39, m/z 2,465.199, Sigma, cat 
#. A8346)).

	 1.	4800 Proteomics Analyzer (ABI).
	 2.	MALDI plates (ABI).
	 3.	Mass Standards Kit containing a six-peptide mixture (ABI, cat# 

4333604).

2.4  Liquid 
Chromatography 
Systems

2.4.1  Strong Cation 
Exchange Liquid 
Chromatography

2.4.2  Peptide Desalting

2.4.3  Reversed-Phase 
Liquid Chromatography

2.5  Mass 
Spectrometry
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	 1.	4000 Series Explorer (ABI).
	 2.	GPS Data Explorer v3.5 (ABI).
	 3.	Mascot Search Engine v1.9 (Matrix Science Ltd. London, UK).

	 1.	Mouse left ventricular tissues (~100  mg) are diced into 
2 × 2 mm cubes and wash thoroughly by ice-cold PBS (repeat 
twice) to remove blood content in a 2 ml Eppendorf tube.

	 2.	Spin down heart tissues and remove supernatant.
	 3.	Add 500 ml of either ICAT or iTRAQ lysis buffer to each sam-

ple tube (see Note 2).
	 4.	Perform heart tissue homogenization on an Omni Tissue 

Homogenizer at 4 °C. Six strike cycles (15 s each) were carried 
out with 2 min cooling interval to avoid overheating (see Note 3).

	 5.	Remove tissue debris in the homogenates by centrifugation for 
30 min at 14,000 × g at 4 °C in a bench-top centrifuge. Transfer 
supernatants into a fresh 1.5 ml Eppendorf tube and keep it on 
ice.

	 6.	Measure protein concentrations for all six samples using the 
BCA protein assay with bovine serum albumin (BSA) diluted 
in the lysis buffer as standards. Protein yield will be in the range 
of 4–10 mg/ml depending on the lysis buffer of choice.

	 7.	Adjust protein concentration of each sample to the same level 
with either ICAT or iTRAQ lysis buffer.

	 1.	Pipette 120 mg protein from each sample into separate tubes 
(see Note 4).

	 2.	Precipitate protein in cold acetone (5:1 ratio at −20 °C) over-
night (see Note 5).

	 3.	Pellet protein content by high-speed centrifugation for 15 min 
at 14,000 × g at 4 °C.

	 4.	Remove supernatant and wash the pellets three times with cold 
acetone (−20 °C).

	 5.	Solubilize protein with 80  ml of ICAT-labeling buffer: 6  M 
urea, 2  % CHAPS, 0.01  % SDS, and 30  mM Tris–HCl at 
pH 8.3 (see Note 6).

	 6.	Bring the ICAT reagent tubes to room temperature and briefly 
spin down the powder to the bottom of the tubes.

	 7.	Add 20  ml of ACN to each ICAT tube and vortex the 
solution.

	 8.	Spin down the solution to the bottom of the tubes and transfer the 
entire content to designated sample tubes for protein labeling.

2.6  Data Analysis 
Software
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3  Methods

3.1  Protein 
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Trx1 Targets in Mouse Heart

	 9.	Incubate the mixture for 2 h at 37 °C.
	10.	Briefly centrifuge to bring all the solution to the bottom of 

each tube.
	11.	Quench excess ICAT reagents by adding 10 mM DTT (final 

concentration) and incubate for 15 min (see Note 7).
	12.	Alkylate newly generated sulfhydryls by 15  mM IAM (final 

concentration) and incubate for 15 min at room temperature 
in dark (see Note 8).

	13.	Mix light and heavy ICAT-labeled sample pairs.
	14.	Dilute the sample volume at least 6 times with 20 mM ammo-

nium bicarbonate buffer (see Note 9).
	15.	Add trypsin solution to a final 1:50 ratio (enzyme: protein) 

and digest overnight at 37 °C (see Note 8).
	16.	Dry the digested peptide samples in a speedvac.

The combined peptide mixture was separated by strong cation 
exchange liquid chromatography (SCX-LC) on a polysulfoethyl-A 
column to remove excess ICAT reagents and unwanted detergent 
(SDS and CHAPS), prior to fractionation of the peptides.

	 1.	Reconstitute the ICAT-labeled peptides by adding ~500 ml of 
SCX Mobile Phase A. Adjust pH to 2.5–3.0 with phosphoric 
acid if necessary.

	 2.	Centrifuge the sample at 20,000 × g for 10 min to remove any 
particulates.

	 3.	Equilibrate the SCX column with Mobile Phase A, and then 
inject the ICAT-labeled peptides onto the SCX column through 
a 500 ml sample loading loop.

	 4.	The gradient profile of SCX consisted of 10  min of 100  % 
Mobile Phase A followed by 30 min of 0–25 % Mobile Phase B 
and 20 min of 25–100 % B at 1 ml/min. Collect peptide frac-
tions at 2 min/fraction after the elution of neutral and anionic 
interference.

	 5.	Dry all the SCX fractions in a speedvac for subsequent desalt-
ing steps.

	 1.	Reconstitute each dried SCX fraction in 150 ml of the Loading 
Solution (see Note 10).

	 2.	Add 200 ml of the Activation Solution into a C18 spin column 
and centrifuge at 1,500 × g for 1 min. Repeat this step once.

	 3.	Equilibrate the spin column with 200  ml of the Loading 
Solution and centrifuge the column at 1,500 × g for 1  min. 
Repeat this step twice.

	 4.	For each SCX fraction, load 150  ml of the peptides in the 
Loading Solution onto the spin column and centrifuge at 

[AU3]
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1,000 × g for 1 min and collect the flow through. Reload the 
flow through materials onto the spin column.

	 5.	Wash the bound peptides with 200 ml of the Loading Solution 
and centrifuge at 1,500 × g for 1 min to remove salts. Repeat 
this step twice.

	 6.	Elute the peptides using 100  ml of the Elution Solution by 
centrifugation at 1,500 × g for 1 min and repeat twice. Collect 
all three eluants into the same Eppendorf tube.

	 7.	Dry the peptides solution in a speedvac.

	 1.	Reconstitute each dried peptide fraction in 500  ml of the 
Affinity-Load Buffer, vortex to mix the solution. Confirm the 
pH of solution is ~7.0 (see Note 11).

	 2.	Briefly centrifuge to bring all the solution to the bottom of the 
tubes.

	 3.	Assemble avidin cartridge system.
	 4.	Load 2 ml Affinity-Elution Buffer to the cartridge and discard 

the eluate.
	 5.	Load 2 ml Affinity-Load Buffer to the cartridge and discard 

the eluate.
	 6.	Slowly load (drop by drop) the peptide samples in 500 ml of 

the Affinity-Load Buffer and collect the flow through (see 
Note 12).

	 7.	Reload the flow on the avidin cartridge and collect the flow 
through.

	 8.	Wash the avidin cartridge with 1 ml of Wash1 and divert the 
eluate to waste.

	 9.	Wash the avidin cartridge with 1 ml of Wash2 and divert the 
eluate to waste.

	10.	Wash the avidin cartridge with 1 ml of Milli-Q water and divert 
the eluate to waste.

	11.	Load 800 ml of Affinity-Elution Buffer into syringe and inject 
slowly to the cartridge (~1 drop/5 s) and discard the first 50 ml 
of eluate. Collect the remaining 750 ml of eluate into a glass 
vial.

	12.	Repeat steps 1–11 for the remaining peptide fractions.

	 1.	Speedvac the affinity eluates to complete dryness (see Note 13).
	 2.	Prepare cleavage mixture of 95 ml of cleavage reagent A with 

5  ml of cleavage reagent B and mix them with dry peptide 
samples.

	 3.	Vortex the reaction mixture and incubate at 37 °C for 2 h.
	 4.	Centrifuge and dry the reaction mixtures.

3.5  Enrichment of 
ICAT-Labeled Peptides 
by Avidin Affinity 
Chromatography

3.6  TFA Cleavage  
of Biotin Moiety  
from ICAT Peptides
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Trx1 Targets in Mouse Heart

	 1.	Reconstitute cleaved ICAT peptide samples in 20 ml of RPLC 
Mobile Phase A (MPA), vortex vigorously, then centrifuge at 
10,000 × g for 5 min.

	 2.	Equilibrate the RPLC column with 5 % RPLC Mobile Phase B 
for at least 15 min for stable column pressure.

	 3.	Each fraction (6.4 ml) will be loaded onto a C18 trapping col-
umn using a Microliter Pickup method at a flow rate of 20 ml/
min. Online desalting step was carried out by a 5-min MPA 
wash.

	 4.	Peptides bound to the trapping column are subsequently 
resolved on a C18 capillary PepMap column with the following 
gradient profiles at a flow rate of 400 nl/min (Table 1).

	 5.	Mix the RPLC eluants in line with MALDI matrix in a 1:2 
ratio through a 30 nl mixing tee, and deposited onto a MALDI 
plate using the Probot, at 12 s per spot.

	 6.	Repeat the RPLC steps for each SCX fraction.

	 1.	Mix 50  fmol of 6-peptide calibrants at a ratio of 1:1 with 
MALDI matrix solution. Deposit the freshly prepared calibrant 
solution on the calibration spots on the MALDI plate.

	 2.	Create a new spot set and load and align the ICAT sample 
plates. Load the sample plates into the plate loader of the 4800 
Proteomics Analyzer.

	 3.	Acquire and update the MS calibration file using the six-pep-
tide mixture in the Mass Standards Kit. The MS/MS calibra-
tion file needs to be updated using GFP MS/MS ions (m/z 
1,570.677).

	 4.	Acquire MS spectra for each spot in the positive ion mode with 
a laser intensity of 3,200 and mass range of 850–3,500 and 
sum of the first 1,500 laser shots. In the MS processing method, 

3.7  RPLC and 
Spotting MALDI Plate

3.8  Mass 
Spectrometry

Table 1 
Gradient profiles for C18 PepMap column (flow rate: 400 nl/min)

Time (min) Solvent A Solvent B

0 95 5

2 95 5

75 70 30

90 10 90

100 10 90

105 95 5

115 95 5
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use internal calibration standards (GFP (m/z 1,570.677) and 
ACTH 18–39 (m/z 2,465.199)) to achieve a mass accuracy 
better than 50 ppm.

	 5.	After MS analysis, identify and extract ICAT ion pairs (D m/z 
9.03 ± 0.03  Da) by GPS Explorer software (v3.5 ABI). 
Compute the relative ICAT ratios with the integrated chro-
matographic areas of each ICAT ion pair. Submit ICAT pair 
with over 20 % change ratio and signal/noise ratio (S/N) > 50 
to MS/MS acquisition (see Note 14).

	 6.	In the MS/MS acquisition method, spectra are accumulation 
of 2,000 laser shots at a laser intensity of 3,200 using 2-keV 
collision energy and 5 × 10−7  Torr collision gas pressure. 
Generate peak lists with 4000 Series Explorer with the follow-
ing settings: set S/N threshold to 10, local noise window width 
at 250 m/z, and minimum peak width bin size was 2.9; set 
resolution at 22,000 at m/z 2,400 for MS and 8,000 at m/z 
2,000 for MS/MS. Smooth MS/MS spectra with the Savitzky–
Golay algorithm (FWHM = 9, polynomial order = 4).

	 1.	Perform peptide identification on a MASCOT search engine 
(v1.9) integrated in the GPS Explorer software with the  
following search parameters: one missed tryptic cleavage, 
50 ppm for MS mass error tolerance, and 0.3 Da for MS/MS 
mass error tolerance, variable modifications included ICAT 
L/H modifications, carbamidomethylation of cysteines, and 
methionine oxidation.

	 2.	Unique peptides with confidence interval (C.I.) values above 
95 % from the MS/MS search are considered significant (see 
Note 15).

	 1.	Pipette 100 mg of protein from the four samples into four sepa-
rate tubes (see Note 16). To each sample, add 2 ml of reducing 
reagent and vortex. Bring down the contents with a brief cen-
trifugation. Incubate the sample tubes at 60 °C for 1 h. Spin 
briefly to settle the liquid to the bottom of each tube.

	 2.	To each sample, carefully add 1  ml of the cysteine-blocking 
reagent. Mix by vortexing and centrifuge briefly to collect the 
solutions at the bottom of the tube. Incubate at room  
temperature for 10 min.

	 3.	Reconstitute two vials of trypsin (20 mg/vial) with 25 ml each 
of HPLC grade water. Vortex briefly.

	 4.	To each sample tube, add 10 ml of the trypsin solution, vortex, 
and centrifuge briefly to collect the solution at the bottom of 
the tube. Incubate at 37 °C for 12–16 h. Spin briefly to bring 
the sample solution to the bottom of the tubes (see Note 17).

	 5.	Bring the iTRAQ reagents to room temperature. Add 70 ml of 
ethanol into each reagent vial, cap the vial and vortex vigorously, 

[AU4]

3.9  Database Search

3.10  Trypsin 
Digestion and iTRAQ 
Labeling
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and then centrifuge briefly to settle the iTRAQ reagents to the 
bottoms of the vials (see Note 18).

	 6.	Transfer the entire content of one iTRAQ reagent vial into 
each of the four sample tubes, and vortex to mix thoroughly. 
Spin briefly to collect the liquid at the bottom of the tubes. 
Peptides derived from the two control samples are labeled with 
iTRAQ Reagents 114 and 115, whereas peptides obtained 
from the two Trx1 overexpressed samples are labeled with 
iTRAQ Reagents 116 and 117. Incubate the reaction vials at 
room temperature for 1 h.

	 7.	Carefully combine the entire contents of all four iTRAQ-
labeled samples into one tube, mix thoroughly by vortexing, 
and then centrifuge briefly.

	 1.	The combined peptide mixture will be first separated by 
SCX-LC to remove excess iTRAQ reagents. In order to remove 
both TEAB and the organic solvent from the sample, dry the 
combined sample completely in a vacuum concentrator (see 
Note 19). Follow the same steps in Subheading 3.3 to frac-
tionate the peptides.

	 2.	Follow the same steps in Subheading 3.4 to desalt the pep-
tides. Dry the resulting peptides by speedvac and reconstitute 
the peptides with 10 ml Solvent A. Use Nano-RPLC for pep-
tide separations following the same steps in Subheading 3.7, 
except using the following gradient: (Table 2).

	 3.	Mix the RPLC eluants in line with MALDI matrix and depos-
ited onto a MALDI plate. Follow steps 1–3 in Subheading 3.8 
to calibrate the 4800 MALDI TOF/TOF analyzer.

3.11  2D-LC 
Separation and MS 
Analysis

Table 2 
Gradient profile for Nano-RPLC column (C18 Capillary PepMap) used to 
separate the combines peptide mixture (all four iTRAQ samples)

Time (min) Solvent A Solvent B

0 95 5

4 92 8

34 82 18

57 62 38

64 5 95

69 5 95

70 95 5

85 95 5
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	 4.	Create an acquisition, a processing, and a job-wide interpreta-
tion method for both MS and MS/MS analyses. Use the MS 
acquisition method in a positive MS reflector with a mass range 
of 850–3,000 (in Da) and a focus mass of 1,950 Da. Set the 
laser intensity to 3,000 and the detector voltage multiplier at 
0.90. Average MS spectrum over 1,000 laser shots. In the pro-
cessing method, GluFib (m/z 1,570.677) and ACTH 18–39 
(m/z 2,465.199) masses are used as the internal calibrants.

	 5.	For the interpretation method, the precursor selection is based 
on a minimum S/N filter of 50, precursor mass tolerance of 
200 ppm, and from weakest to strongest peaks as an MS/MS 
acquisition order.

	 6.	Use a 2 kV positive MS/MS method. Set the laser intensity to 
4,000 and detector voltage multiplier at 0.90. Specify the 
metastable suppression as “on” and the precursor mass win-
dow at relative 400 resolution (FWHM). Each MS/MS spec-
trum is accumulated over 4,000 laser shots. In the MS/MS 
processing method, each spectrum is smoothed using the 
Savitzky–Golay algorithm with points across the peak set at 
3 and polynomial order set at 4. Set the medium CID 
gas recharge pressure to medium with a threshold of 
5.0 × 107 Torr.

	 1.	Peptide identification is performed by searching the MS/MS 
spectra against Swissprot mouse database (see Note 20), using 
a local MASCOT search engine (v. 1.9) on a GPS (v. 3.5, ABI) 
server. The following search parameters are used: trypsin with 
one missed cleavage, mass tolerance of 50 ppm for the precur-
sor ions, and 0.3 Da for the MS/MS fragment. iTRAQ-labeled 
N-terminal and lysine and cysteine methanethiolation were 
selected as fixed modifications, while methionine oxidation 
and iTRAQ-labeled tyrosine were considered as variable 
modifications. Only peptides identified with confidence inter-
val (C.I.) values greater than 95 % should be used for protein 
identification and quantitation.

	 2.	Extract the iTRAQ reporter ions cluster areas using GPS 
Explorer. Only ion counts greater than 5,000 are used for 
quantification analysis. The individual reporter ion peak areas 
for each iTRAQ channel are normalized by the population 
median.

	 3.	For each peptide, the ratio of normalized reporter ion peak areas 
at 115, 116, and 117 are divided by the normalized reporter ion 
peak areas at 114. Such ratios are then transformed into log2 
values. In cases of multiple MS/MS spectra matched to the same 
peptide sequence, the peptide ratio is calculated and weighted 
based on the relative proportion of each spectrum.

[AU5]
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	 4.	The mean of all peptide ratios from the same protein are calcu-
lated. The relative protein expression between Tg-Trx and 
control samples are computed based on the following 
equation:

	 116 117 114 115( ) ( )

2 2
i i i i

i

P P P P
P

 
  	

Pi: the pooled protein log2 ratio of the ith protein (i = 1, 2, 3, … 
N, where N is the total number of identified proteins).

	 5.	The p-values in Student’s t-tests are calculated by comparing 
each protein log2 ratio in the control group (P114 and P115) to 
those in the Tg-Trx group (P116 and P117) using Microsoft 
Excel. Anti-log2 of Pi values is calculated to produce the exact 
protein fold change values.

	 1.	It is recommended to use freshly prepared lysis buffer. Selection 
of proper detergents is discretional upon protein of interest 
(e.g., membrane proteins)

	 2.	To preserve the native redox states of protein cysteines, it is 
highly recommended to minimize sample exposure to air, keep 
samples on ice during sample preparation if compatible, and 
purge with high-purity nitrogen for extended incubation (e.g., 
trypsin digestion step).

	 3.	Depending on the detergents of choice, excessive bubbles may 
be formed in the lysis process. A quick spin-down of sample 
tubes at 4 °C will help to remove bubbles.

	 4.	Estimate free protein thiol content in the samples. For exam-
ple, for 100 mg protein with an average mass of 50 kDa and 6 
cysteines per protein, the total cysteine content can be esti-
mated as 100 × 10−6  g/50,000  g/mol × 6 = 12  nmol. Each 
ICAT tube contains 175 nmol of labeling reagent to maintain 
excessive reagent/free cysteines ratio >10 times for complete 
labeling.

	 5.	Whole cell lysates contain many small molecules that could 
have adverse effects on protein ICAT labeling. For example, 
glutathione and other cysteine-containing antioxidants are 
observed at high levels (mM) and will consume ICAT reagents 
at much faster reaction rates than protein thiols. Alternative 
precipitation methods (such as TCA precipitation and metha-
nol/chloroform precipitation) and buffer exchange methods 
(membrane ultrafiltration) can be implemented to remove 
interfering molecules.

4  Notes
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	 6.	To avoid protein loss and sample variation, complete solubilization 
of proteins is a key step. Mild agitation with Eppendorf pipette 
tips and sonication in a water bath will facilitate protein solubi-
lization. Increasing SDS concentration to 0.05  % can also 
enhance the degree of protein solubilization.

	 7.	In addition to scavenging excess ICAT reagents, DTT also 
reduces disulfide bonds and other reversible cysteine 
modifications. This is important in the forward redox ICAT-
labeling scheme, since the reduction of disulfide bonds (omit 
before ICAT labeling) will facilitate tryptic digestions and 
improve protein and peptide identifications.

	 8.	Aliquot 1 ml of solution from each reaction mixture (step 13) 
and 1 ml of solution before and after tryptic digestion for as a 
quality control step. Load the samples in separate lanes of 
1D-SDS PAGE. After electrophoresis and protein staining, 
evaluate the initial sample loading and digestion efficiency. In 
the second QC test, mix 1 ml each of tryptic heavy and light 
ICAT-labeled peptides desalt with ZipTip and spot the sample 
at 1:1 ratio with MALDI matrix solution on a MALDI plate. 
Acquire MS spectrum of the peptides and evaluate the abun-
dance and relative ratio of ICAT pairs with 9 Da (or multiplier) 
mass differences.

	 9.	Reducing urea concentration to <1 M is important for effec-
tive trypsin digestion. It is also important to adjust the pH of 
the solution to the range of 8.0–8.5 for optimum trypsin 
activity.

	10.	Combining adjacent fractions with less peptide abundance 
according to the SCX chromatogram greatly reduces the sam-
ple processing time without much loss of total protein 
identification and quantification. Late-eluted fractions might 
have more salts and require additional loading buffer for full 
dissolution.

	11.	The loading capacity of the avidin cartridge is ~10 mg of peptide. 
A new avidin cartridge can be used up to 50 times with proper 
usage and storage.

	12.	Using a syringe pump (e.g., Standard Infusion Only Pump 11 
Elite Syringe Pumps, Harvard Apparatus, Holliston, MA, 
USA) for solvent delivery yields more consistent and robust 
results.

	13.	Residual water content will have an adverse effect on the cleav-
age reaction. It is critical to dry the peptide samples completely 
before TFA cleavage. Perform the reaction in a hood with 
proper ventilation. Since TFA is reactive and corrosive to a 
broad range of materials, it is suggested to use glass vials  
and glass syringe with metal plunger to transfer and hold the 
reaction mixtures.
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Trx1 Targets in Mouse Heart

	14.	Peptides containing multiple cysteines can result in multiple 
ICAT labeling; thus, the mass difference for these peptides 
may be observed in multipliers of (D m/z 9.03 ± 0.03  Da). 
This can be addressed by setting allowance of multiple ICAT 
labeling in the GPS Explorer software.

	15.	One-hit-wonder is one of the caveats in using ICAT-labeled 
peptides for protein identification and quantifications, given the 
low observation frequency of cysteines (< 3.3 %) in vertebrate 
proteomes. It is not uncommon to find only one ICAT-labeled 
peptide for a given protein. Careful inspection of MS and MS/
MS spectra for positive identification and removal of potential 
interference is important to reduce false-positive results. One 
confirmative hallmark for ICAT-labeled peptide is the signature 
mass differences of 339.1 for heavy ICAT labeled and 330.1 for 
light ICAT labeled, between yn and yn − 1 ions, where n indi-
cates the location of ICAT-labeled cysteine (Fig. 2).

	16.	Based on iTRAQ instructions from ABI, each protein sample 
should be between 5 and 100  mg for each iTRAQ-labeling 
reaction. To ensure maximum labeling efficiency, sample vol-
umes should be less than 50 ml each. If the sample volume is 
larger than 50 ml, a speedvac can be used to reduce the sample 
volume before iTRAQ labeling.
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Fig. 2 Peptide identification and quantitation by ICAT and iTRAQ. Panel (a) sequence of cysteine-containing 
peptide is identified by matching MS2 fragment ion mass to the predicted theoretical fragments. The addition 
of 227 Da (236 Da for the heavy ICAT tag) to a cysteine residue is a hallmark of an ICAT-labeled peptide (mass 
difference between y3 and y4 ions). Quantitation of light and heavy labeled peptides (redox states of cysteines 
in this case) is computed from the precursor intensities acquired from the MS1 scan (left inset) or from the 
integrated extracted ion chromatogram. (b) iTRAQ quantitation is carried out on the reporter region (mass 
range 114–117 for 4-plex iTRAQ) in the MS2 spectra (see inset of panel b). The individual peak intensity of 
each mass reporter ion reflects the corresponding peptide/protein level in each sample. The peptide sequence 
is identified in a similar manner as ICAT technology. Modified from Molecular & Cellular Proteomics, 2009 (8), 
1674–1687 with permission
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	17.	It is important to check the protein digestion efficiency before 
iTRAQ labeling. Take 1 ml of each digested sample and desalt 
it using a C18 ZipTip (Millipore, Billerica, MA). Mix the eluted 
peptides with the MALDI matrix solution in a 1:1 ratio and 
spot them onto a MALDI plate. Acquire MS spectra to check 
if the peptide ion signals are comparable.

	18.	To maximize labeling efficiency, the concentration of organic 
reagents (ethanol and iTRAQ reagents) in iTRAQ-labeling 
reactions should be larger than 60 % (v/v).

	19.	To remove all of the TEAB, reconstitute the combined iTRAQ-
labeled samples in 100 ml of HPLC grade water and dry the 
sample in a vacuum concentrator. Repeat this step twice to 
ensure all the TEAB is evaporated.

	20.	It is important to use the latest version of the protein database 
to ensure comprehensive peptide identification. Swissprot, IPI, 
NCBI protein database, or EST (6 frame translation into pro-
tein sequences) can be used, with an increasing number of 
entries and database size. Generally speaking, using bigger 
databases will likely increase one’s chance to match a spectrum 
to a peptide sequence. However, it will also increase the odds 
for random matching. We chose the Swissprot database for our 
study because of its high protein sequence accuracy and low 
redundancy.
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