Genetic barriers to transplantation

autograft
from one part of the body to another, e.g. trunk to arm

isograft
between genetically identical individuals, e.g. monozygotic twins, or within an inbred strain

allograft
between different members of the same species, e.g. Mr Smith to Mr Jones

xenograft
between members of different species, e.g. monkey to man
Figure 17-1
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H. Freeman and Company
First skin graft, strain A

Naive strain = B mouse

First-set rejection

Time

Second skin graft, strain A

Necrosis

Second-set rejection

Naive strain = B mouse

14 days

6 days

Spleenic T cells

First skin graft, strain A

Necrosis

6 days
Figure 17-3
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H. Freeman and Company
Antibody to different HLA-A antigens

Recipient

Donor 1

Donor 2

Figure 17-4b
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H. Freeman and Company
Serological tissue typing

complement → HLA-B8 → anti-HLA-B8 → trypan blue
Figure 17-4c

Donor cells

Allele A

Reciprocal cells lacking class II MHC of donor

Activation and proliferation of recipient cells

[3H]thymidine

Incorporation of radioactivity into cell nuclear DNA

No reaction

Recipient cells sharing class II MHC of donor

Irradiation

Allele B
Figure 17-5
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H. Freeman and Company
A. Direct allore cognition

- Allogeneic MHC
- Allogeneic antigen-presenting cell in graft
- Alloreactive T cell
- T cell recognizes unprocessed allogeneic MHC molecule on graft APC

B. Indirect alloantigen presentation

- Allogeneic MHC
- Professional APC in recipient
- Self MHC
- Uptake and processing of allogeneic MHC molecules by recipient APC
- Presentation of processed peptide of allogeneic MHC molecule bound to self MHC molecule
- Peptide derived from allogeneic MHC molecule
<table>
<thead>
<tr>
<th>Type of Rejection</th>
<th>Time Taken</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperacute</td>
<td>minutes-hours</td>
<td>preformed anti-donor antibodies and complement</td>
</tr>
<tr>
<td>Accelerated</td>
<td>days</td>
<td>reactivation of sensitized T cells</td>
</tr>
<tr>
<td>Acute</td>
<td>days-weeks</td>
<td>primary activation of T cells</td>
</tr>
<tr>
<td>Chronic</td>
<td>months-years</td>
<td>causes are unclear: antibodies, immune complexes, slow cellular reaction, recurrence of disease</td>
</tr>
</tbody>
</table>
1. Preexisting host antibodies are carried to kidney graft.

2. Antibodies bind to antigens of renal capillaries and activate complement (C^-).

 Capillary endothelial walls

3. Complement split products attract neutrophils, which release lytic enzymes.

4. Neutrophil lytic enzymes destroy endothelial cells; platelets adhere to injured tissue, causing vascular blockage.

 Platelets
Table 16-1. Methods of Immunosuppression in Clinical Use

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclosporine and FK-506</td>
<td>Block T cell cytokine production by inhibiting activation of the NFAT transcription factor</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>Blocks proliferation of lymphocyte precursors</td>
</tr>
<tr>
<td>Mycophenolate mofetil</td>
<td>Blocks lymphocyte proliferation by inhibiting guanine nucleotide synthesis in lymphocytes</td>
</tr>
<tr>
<td>Rapamycin</td>
<td>Blocks lymphocyte proliferation by inhibiting IL-2 signaling</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>Reduce inflammation by inhibiting macrophage cytokine secretion</td>
</tr>
<tr>
<td>Anti-CD3 monoclonal antibody</td>
<td>Depletes T cells by binding to CD3 and promoting phagocytosis or complement-mediated lysis (used to treat acute rejection)</td>
</tr>
<tr>
<td>Anti-IL-2 receptor antibody</td>
<td>Inhibits T cell proliferation by blocking IL-2 binding</td>
</tr>
<tr>
<td>CTLA4-Ig</td>
<td>Inhibits T cell activation by blocking B7 costimulator binding to T cell CD28; used to induce tolerance (experimental)</td>
</tr>
<tr>
<td>Anti-CD40 ligand</td>
<td>Inhibits macrophage and endothelial activation by blocking T cell CD40 ligand binding to macrophage CD40 ligand binding to macrophage CD40 (experimental)</td>
</tr>
</tbody>
</table>
Cyclosporine introduced

Five-year survival (%) of cardiac allograft patients

Year of transplant

Copyright © 2003, Elsevier Science (USA). All Rights Reserved.
Figure 17-8

Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H. Freeman and Company
T cells that recognize graft antigens become activated

Graft rejected
T cells that recognize graft antigens lack costimulation and become anergic. Graft survives.
Figure 17-10

Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H. Freeman and Company
Cornea
From cadaver
Immunosuppression not required
47,000 transplants in 2005

Skin
Mostly autologous (burn victims)
Temporary grafts of nonviable tissue
Allogeneic grafts rare, require immunosuppression

Lung
From brain-dead donor
Procedure recently developed;
little data available
1408 transplants in 2005
Often heart/lung transplant (33 in 2005)

Blood
Transfused from living donor
ABO and Rh matching required
Complications extremely rare
An estimated 14 million units used each year

Heart
From brain-dead donor
HLA matching useful but often impossible
Risk of coronary artery damage, perhaps mediated by host antibody
2127 transplants in 2005

Pancreas
From cadaver
Islet cells from organ sufficient
540 transplants in 2005
Increasingly, pancreas/kidney transplant for advanced diabetes (903 in 2005)

Kidney
From live donor or cadaver
ABO and HLA matching useful
Immunosuppression usually required
Risk of GVHD very low
16,477 transplants in 2005

Liver
From cadaver
Surgical implantation complex
Resistant to hyperacute rejection
Risk of GVHD
6444 transplants in 2005

Bone marrow
Needle aspiration from living donor
Implanted by IV injection
ABO and HLA matching required
Rejection rare but GVHD a risk
Digestion with collagenase frees islets from surrounding tissue

Centrifugation isolates islets containing mainly alpha and beta cells

Purified islet

Islets established in sinusoids

Purified islets, transplanted through a catheter into the liver portal vein, move to liver sinusoids, where they become permanently established.
<table>
<thead>
<tr>
<th></th>
<th>HLA-A</th>
<th></th>
<th>HLA-B</th>
<th></th>
<th>HLA-DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor 1</td>
<td> </td>
<td></td>
<td> </td>
<td></td>
<td> </td>
</tr>
<tr>
<td>Donor 2</td>
<td> </td>
<td></td>
<td> </td>
<td></td>
<td> </td>
</tr>
<tr>
<td>Donor 3</td>
<td> </td>
<td></td>
<td> </td>
<td></td>
<td> </td>
</tr>
<tr>
<td>Donor 4</td>
<td> </td>
<td></td>
<td> </td>
<td></td>
<td> </td>
</tr>
</tbody>
</table>